京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和BI商业智能有何区别?有何相关
大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级。
1、大数据和BI两者的区别
BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策,解决的是管理运营战略的问题。
大数据(Big Data)是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。大数据侧重于解决某一类问题的方法,比如全网用户画像,对网络、传感器等非结构化海量数据的分析。
不管定义如何不同,大数据与传统BI是社会发展到不同阶段的产物,大数据对于传统BI,既有继承,也有发展,从"道"的角度讲,BI与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。
当然纯粹从思想的角度讲,两者在概念上是可以实现统一的,都遵循数据-信息-知识-智慧这个脉络,甚至在更高的层次,两者也是可以统一的。
2、两者技术上有什么相关性?
传统BI的技术标签:ETL、数据仓库、OLAP、可视化报表。
大数据的技术标签:Hadoop、MPP、HDFS、MapReduce、流处理等。
传统BI就目前来讲,其功能都可以被对应的大数据组件所替代,但大多数企业缺乏大数据业务的驱动,也缺乏相关的高技术人才。
不过新型BI被赋予了更多“大数据”潜能。正如图右侧架构所示,BI架设在大数据应用层,抽取etl后或者Hive来的数据又可作通用类的业务分析。既满足了海量实时数据分析,也满足了决策型的业务分析。
3、企业应该青睐大数据还是商业智能?
在技术领域,虽然传统BI的一些技术ETL、数据仓库、OLAP、可视化报表似乎都将处于落后边缘,因为它难以解决日后海量数据的处理问题,但是,也不能全盘否定或替代成大数据。一些企业采用SAP HANA,FineBI的直连大数据引擎都是基于这个问题优化的方案。BI的那套也将长期存在,毕竟企业对BI方案还是很青睐,大数据的普及和应用也是个漫长的过程。
大数据 VS 商业智能
大数据不是空口说说,它的第一要务就是解决业务问题,大数据一定程度上就是用全新的数据技术手段来拓展和优化业务,传统企业需要聚集一拨人来研究这个问题,需要有人专门研究和探索。如果对外,想清楚新的商业模式,如果对内,想清楚在哪个场景,可以用大数据的手段提升效率。
当前大数据可以产生价值的地方,从行业的角度看,金融、银行、互联网、医疗、科研都有广阔的前景。从领域的角度看,广告、营销、风控、供应链都是大数据发挥价值的地方,对于特定企业,比如电信运营商,大数据也可以在网络优化等方面提供新方法。
并不是每个企业都需要打造自己的大数据平台,需要考虑到企业的信息化水平和各项成本,量力而行吧,可以自行研发 ,比如BAT;也可以选型采购,比如传统大企业;中小型企业也可以租用,比如用阿里云和AWS。
就事实来讲,BI的应用是远远大于大数据应用的,有其通用的道理。大数据相对于传统BI,也不仅仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员既不要一提大数据,就嗤之以鼻,认为它是新包装的马甲,其实就那么回事;也不需妄自菲薄,以为搞大数据就那么高大上,它的确是BI大多数思想的传承。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27