京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据洪流下的企业未来
大数据正在成为企业所需面临的巨大挑战,这种挑战不仅前所未有,而且对于企业而言,这并非市场的波动,或经济的周期那么简单。这意味着一种新的生产方式和生产工具的应用,也意味着人们将以新的方式来理解和传播知识、信息。
市场需要越来越多的知识整合者,灵活“善变”地应对市场需求。在此大数据洪流面前,创造大数据硬件条件的企业本身如何认知这一变革呢?LSI公司副总裁GautamSrivastava在近日接受了采访,谈论了他对于数据洪流下企业变革的认知。
LSI是一家半导体元器件设计生产厂商,产品主要用于优化网络存储的性能。这家企业去年业务收入达20.8亿美元,年增长率近10%。在2011年上半年,这家企业将外部存储业务以4.8亿出售给NetApp,随后以3.22亿美元收购了固态硬盘芯片厂SandForce。这意味着这家传统的服务器优化服务商将业务重心完全放到了云数据和移动网络上。
GautamSrivastava认为近年来IT行业的巨大变革都意味着数据正在疯狂增长。“从视频的大幅增长,到Facebook等社交网络产生内容量的猛增,企业和消费者产生的数据量在不断地增加,我们预计这个数据量以每年40%-50%的速度再增长。而与此同时,我们的整体技术架构的增长是缓慢的,大概年增长2%-3%。”GautamSrivastava说,他认为,人们将迟早要面对有限资源与膨胀信息之间的取舍。
另一个巨大的需求在于数据正在要求可移动与被分享,百度和腾讯近年来建立了巨大的数据中心就是为了适应数据的大幅度增长,而一旦这些数据被要求可以移动分享,则意味着人们使用数据将耗费更多的资源。
“这意味着中国未来的移动数据市场将有着非常巨大的增长,我估计这个数字是未来3年内有50%的增长,互联网用户将从5亿人增长到7.5亿,这基本上是很多国家市场的增长集合了。”GautamSrivastava说。
移动市场也拥有着巨大的发展机会,目前中国的移动用户约10亿人左右,这类用户也将迅速转化为移动互联网用户,这一市场拥有高市场渗透率和转化率。
此外中国政府对于互联网行业有着长期发展战略,政府也在正在复杂的互联网环境中寻求一个长期优化的发展方案。
更重要的是,中国的人口基数决定了未来五年内,将是中国年轻人拥有越来越多消费能力的时期,而他们从一开始就生活在“互联网时代”。
大数据更需要本土化
“为了迎合这一庞大的趋势,我们从一开始就意识到中国将从一开始就一个高端市场,很多市场问题都必须在中国本土环境下得以解决。”GautamSrivastava说。
G得出这一结论,一方面是看到了全球范围内工程人才出现短缺,而中国已培养大批年轻工程技术人员,中国国内市场需求飙升,需要本土化的技术解决方案,这也意味着中国将成为大数据专利等知识产权最为密集的地方。而这些知识产权将可以再全球范围内使用。
“中国可以说是硅谷的延伸,无论是客户还是知识产权。中国拥有越来越多硕士学位的技术人员,与硅谷类似,而中国客户与我们在硅谷遇到的客户一样,最为关注的问题都是如何解决数据洪流。”
“华为和中兴这样的企业未来增长机会巨大,”GautamSrivastava说,“因为未来中国互联网的移动性将增长迅猛,移动网络快速发展意味着对华为、中兴等企业的技术需求将大涨。”
除此之外,对于原有资源的优化和节能也将迎来市场的热捧。在迅速增长的数据消费面前,有限的基础设施资源有着再优化的需求。这样的市场趋势与节能趋势是相一致。
此外,基础设置智能化也将成为一个关键趋势。企业将需要针对不同的细分市场来制定不同的产品与服务。这也意味着,企业内部数据将有能力对不同类型的客户排序区分,这不仅意味着效率的提升,也意味着创新服务和产品的可能。
整合型人才将更为抢手
“一个有趣的发现是,我们发现大数据的发展催生出一种需要,就是企业需要对大数据进行快速甚至实时的分析。”GautamSrivastava说。
十年前,企业高管们所需要做的是,收集整年或者半年的数据,在做财报的时候对全年数据进行分析和整合,而现在不管是CMO还是CFO,CTO,都需要及时地分析大量相关数据,并敏捷低应对市场变化。
更重要的是,企业与市场沟通的方式也在发生变化,以往企业与市场的沟通是单向的。企业仅仅需要给出信息,找到合适的渠道去发布信息。而现在网络成为了企业与终端客户之间互动的主要工具,越来越多的企业在网络上及时地描述自我前景。单纯的技术门槛已经无法成为说服或者吸引市场的方式,整合数据,从技术提供商转变为解决方案的供应商,才是网络市场,这个信息爆炸的时代下,企业的生存之道。
“我们意识到大数据带来的变化,我们越来越需要这样的人才:他不仅了解技术本身,更了解客户遭遇问题的环境及背景,并懂得如何利用技术来提供解决方案。”GautamSrivastava认为,“另一个关键在于,我们需要越来越多的整合型人才,他不仅有能力把知识产权,客户知识产权结合在一起,而且能够最终设计出整个架构和方案。这是我们看到的全新趋势。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16