在大数据时代,商业模式正发生大变革 大数据的“喧闹”已有几年,业界认为,现在是认真冷静下来思考一些关于大数据根本性问题的时候了。近日,国内专注于大数据应用产品的“据说研究院”负责人接受本报采访时表 ...
2016-06-06大数据在零售行业的创新性应用 随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长,而云计算的诞生,更是直接把我们送进了大数据时代。“大数据”作为时下最时髦的词汇,开始向各行业渗透辐 ...
2016-06-06从日志统计到大数据分析 首先,我们回到2008年。那个时候,我是属于百度搜索新产品部的,像知道、贴吧、百科等,都属于这个部门的产品。部门里有个小团队叫Nslog,一共四个人,其中两个是实习生,所负责的工作 ...
2016-06-05商品分析(线下)主要数据指标有哪些? 对于很多做数据分析的人员,很多新入职的员工对这下商品分析线下的指标不是很了解,下面就简单的介绍一下? 1)销售数量 客户消费的商品的数量。 2 ...
2016-06-05大数据实时推荐-不只是统计 随着大数据时代的来临,如何帮助用户从大量信息中迅速获得对自己有用的信息成为众多商家的重要任务,个性化推荐系统应运而生。个性化推荐系统以海量数据挖掘为基础,引导用户发现自 ...
2016-06-05大数据时代,你的数据属于谁? 在这个所谓的DT(数据科技)时代,数据的价值正在为人所知,由此而来的个人信息泄露事件也层出不穷。然而,当人们将矛头指向黑客入侵系统漏洞、撞库拖库等,却忽略了掌握数据源的互 ...
2016-06-05大数据爆发可能性:基础要件已经具备 从数据源到数据应用形成完整生态 国内大数据市场爆发的核心要件已经具备。 基于对影响产业发展的核心因素的分析, 立足当前时点, 我们判断国内大数据产业已经具备规模爆发 ...
2016-06-05看得见的未来-十谈大数据时代 半年前开始讨论大数据时代的到来时,大数据还只是个专业小圈子里探讨的话题。到今天写到系列文章的最后一篇时,大数据这个概念已经在业界内外和大众媒体上沸沸扬扬地广为传 ...
2016-06-04企业发展大数据分析策略的五个建议 这项题为《现实世界大数据使用情况分析》的研究是基于IBM公司在去年年中针对95个国家的26个行业的1144位大数据领域的专业人士进行的调查研究得出的。 调查所发现的第一件 ...
2016-06-04与大数据同样重要的,是人的经验与直觉 眼下,关于大数据的很多前卫预测的前提是:Web浏览记录、传感器信号、GPS跟踪和社交网络信息等数据能够以前所未有的程度面向衡量和监控人类及设备的行为敞开大门。 ...
2016-06-04大数据时代的结构和反抗 很多人都知道,数字世界的发展和黑客非常有关系。比如微软的比尔盖茨就做过黑客,最新的标志性人物Facebook的扎克伯格也干过这个事儿。Facebook早期的版本Facemash.com就偷偷地接 ...
2016-06-04大数据时代,为什么我们需要寻找“数据侠”? 当我们在谈论大数据的时候,我们在谈论什么?人们希望通过分析大数据,更了解过去发生了什么、现在正在流行什么、未来会怎样,希望数据能为人们所用,给企业发展以决 ...
2016-06-04大数据分析各高校毕业生就业质量 从就业薪资、离职率、就业质量等多方面通过大数据分析各高校毕业生质量辽宁省大连理工夺魁 近日教育部发布的《2016大学生就业质量研究》报告显示,不同学历毕业生的就业核心 ...
2016-06-03互联网大数据有啥用?它的价值在哪里? 大数据有什么用?笔者并不是这方面的专家,更无法阐述它的具体价值,但是从自己的角度来讲一些心得体会的!今天写这篇文章享给初识互联网,想用心来做的创业者。 每个 ...
2016-06-03大数据正进一步普惠于民,找工作不再难 在大数据时代,大数据不仅仅是一个技术、一种产业,也是一种生活方式。智慧医疗、智慧交通、智慧旅游,正深刻地改变和改善着人们的生活。 在2016贵阳国际大数据产业博 ...
2016-06-03随着人工智能(AI)技术对各行各业有越来越深入的影响,我们也更多地在新闻或报告中听到“机器学习”、“深度学习”、“增强学习”、“神经网络”等词汇,对于非专业人士来说略为玄幻。这篇文章为读者梳理了包括这些在 ...
2016-06-03大数据让商业获得丰硕的进展 做任何事不登陆、不点击或者不浏览某些人或事的想法是不可想象的。我们做的每一件事都会留下一连串的电子指纹。大大小小的公司使用这些数据片段来模糊猜测我们是谁,我们怎样 ...
2016-06-03大数据发展的5条趋势 近几年,大数据已经从大公司独有的流行词和概念变成了驱动我们数字生活发展的动力。下面是未来大数据的处理和发展的五个趋势。 1.数据科学越来越大众化 随着像Coursera、Udacity ...
2016-06-02大数据泡沫正无限膨胀 在当今企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。大数据将挑战企业的存储架构、数据中心的基础设施等,也会引发数据仓库、数据挖掘、商业智能、云计算等应用的连锁 ...
2016-06-02企业大数据建设案例分享 大数据的重要性已毋庸置疑,但大数据的采集、存储、处理、分析、研究,却不是一朝一夕炼成的!数据平台如何建设,推荐系统如何运算,等等,都是我们所关注的话题。2013年7月27日,CTO俱 ...
2016-06-02在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30