6款数据挖掘工具,让你的工作效率UP! 工欲善其事,必先利其器。踏入大数据时代,你的“工具”跟上时代了吗?在数据挖掘过程中,有大量的工具可供使用,比如采用人工智能、机器学习,以及其他技术等来提取 ...
2016-08-31用大智慧实现大数据的大价值 大数据被称为“碎片中的智慧”,被视为驱动新一轮技术革命的关键力量,正在走进并深刻影响我们的生活。在新形势下,如何理性认识大数据,准确把握其带来的机遇,用大智慧实现大数据 ...
2016-08-30大数据在物联网中变革了谁 物联网的价值在于其数据,而物联网带来的史无前例的数据规模将驱动现在的数据服务企业发生根本性改变,这要求企业调整其大数据战略。 具有“大数据时代预言家”之称的维克托· ...
2016-08-30媒体解读微信游戏背后蕴藏的大数据逻辑 我们知道,腾讯十几年的发展,染指了所有可以“复制”的领域,而这些产品除了要在一方占领份额,关键的点在于放进腾讯的QQ账号体系,也就是说,腾讯通过账号的捆绑,把数 ...
2016-08-30运营商坐拥大数据“金矿” 体量太大难挖掘 大数据将成运营商“去管道化”利器,近期围绕这一话题,国内运营商人士讨论热烈。由受OTT的冲击,到“去电信化”等思索,再到大数据这一运营商手中天然的金矿成为理论 ...
2016-08-30大数据精准营销的未来,成就垄断or筑就平衡 在互联网时代,每个网民每天都在制造着巨大的数据量,这些数据量汇总到互联网商手中,就成为一笔无法想象的财富。如果企业能够利用好这些大数据,那么左右市场情况的 ...
2016-08-30是什么卡住了大数据的应用?技术还是商业 要想考察大数据最好同时考察大数据背后的技术、商业和社会维度。从发展成熟度来看,技术维度走的最远、商业维度有所发展但不算全面成熟,社会维度发展最差。所以虽然已 ...
2016-08-29首先,请允许小编嘚瑟一下: CDAS2016中国数据分析师行业峰会报名人数达到了史无前例的4940人! 这也意味着,要早点儿到现场搬小板凳前排占座啊筒子们!!!不要怪本小编没有提醒过你们! 这两天也有一些小伙 ...
2016-08-29扒扒大数据的那些事儿 如今,业界和学术界一直在讨论一个词,那就是大数据。不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等等事情仅仅只是个开始,对 ...
2016-08-29大数据化解不了P2P借贷风险 P2P借贷利率,动辄数倍于基准利率,今年一季度达到21.98%,而银行贷款利率五年以上的也不过6.55%。高利贷盛行,P2P借贷不过是种高利贷的新的借贷形式,只是应用了互联网,但高利贷依 ...
2016-08-29物联网驱动下的大数据管理 物联网的价值在于其数据,而物联网带来的史无前例的数据规模将驱动现在的数据服务企业发生根本性改变,这要求企业调整其大数据战略。 具有“大数据时代预言家”之称的维克托· ...
2016-08-29百度大数据引擎的意义何在 对于大数据这个概念,这两年挺火的。但在我看来,真正能够应用到大数据的也就BAT三家,原因自然是因为他们都有着恐怖的流量作为支撑。而通常情况下样本数越大,误差也就越小。不过这 ...
2016-08-29大数据时代下的挑战与机遇 数据现在已经进入全球经济的各个领域,就像其他的生产必备要素一样,许多现代经济活动离开了它根本不能发生,大数据将带来一波生产率增长和消费者盈余浪潮。作为核心,数据处理必然会 ...
2016-08-29工业大数据在企业运营中八大应用 无论规模大小,无论是生产型还是服务型,无论是盈利还是非盈利机构,运营管理,即产品制造,都是每个组织的核心。我们(企业)所有对市场销售的产品都来自与企业的制造生 ...
2016-08-28论传统行业和电子商务的对数据分析的不同运用 电商界有种说法,说传统企业的电商缺乏电子基因,而电商新贵缺乏商业基因,大数据分析观察来看,就是一个缺乏有效引流、流量转换、网站粘客等产品和运营手段,而另 ...
2016-08-28数据分析,企业管理的GPS 还记得在GPS之前旅行是什么样子吗?在你熟悉的路上驾驶是没有问题的,但是当要出去旅行的时候会不会觉得有一些迷惑:高速路上的哪一个出口才是正确的?我们经过了那个红色仓库了吗?加 ...
2016-08-28发展工业大数据对制造业转型升级有什么意义 什么是工业大数据? 工业大数据,很难从内涵角度来作出一个定义,因为它涉及到很多各种各样的数据。但从外延角度来看,比较容易。 大体上是3+3,第一个“3”是 ...
2016-08-28“大数据”为王成门窗代理商发展新商机 在大数据时代,门窗企业从生产到销售都需要数据支撑才能制定详细的方案,可以说这是一个信息为王的时代,谁拥有庞大的数据库,谁就将推出更能符合市场需求的产品。 ...
2016-08-28大数据给机器学习带来了什么影响 在人工智能界有一种说法,认为机器学习是人工智能领域中最能体现智能的一个分支。从历史来看,机器学习似乎也是人工智能中发展最快的分支之一。 在二十世纪八十年代的 ...
2016-08-28别总怪大数据,你的根本问题出在这儿 前段时间有学员和我吐槽道:感觉现在“大数据”已经被戴上了魔咒,和别的企业家交流的时候,不提大数据都不好意思开口说话。 我曾在移动全网营销课程上强调过:企业应该 ...
2016-08-27在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30