9月3日至9月4日,CDAS 2016中国数据分析师行业峰会在北京国际会议中心成功举办。在为期两天的会议中,近百名国内外专家分享了他们对于大数据行业以及数据人才发展的观点与建议。此次峰会吸引了3000多名数据分析从 ...
2016-09-07大数据驱动下 一场管理革命或将爆发 管理大师戴明(W.Edwards Deming)与德鲁克(Peter Drucker)在诸多思想上都持对立观点,但“不会量化就无法管理”的理念却是两人智慧的共识。这一共识足以解释近年来的数字 ...
2016-09-07大数据在安防领域的应用现状、方向与难点 大数据在安防领域应用也已全面展开,安防已进入大数据时代,如何利用音视频分析技术从这些数据中提取有效信息,找寻到对应的线索,是大数据挖掘的价值所在。 安 ...
2016-09-07数据可视化6大技巧 越来越多的媒体开始接受网络数据,数据可视化便成为不可或缺的一部分。用一个个有效且有逻辑关联性的图形来显示数据、传递信息,能够让人们更加了解事物的本质。虽然现在已经有很多关于数据 ...
2016-09-06大数据时代的企业运营 对于面向用户的企业来说,如何利用大数据现在的玩法应该是比较清楚了。简单来说就是以用户和业务为核心,对用户的相关维度进行数据挖掘,构建用户和业务的属性和特征库,服务业务需 ...
2016-09-06进入大数据行业的公司,你必须了解这六个问题 中国古代的军事学家孙膑在战争中,通过逐步减少行军灶坑来迷惑对手,利用其师弟庞涓对数据信任,制造其带领军队溃败的假象,最后在对方轻敌冒进的前提下,突 ...
2016-09-06数据与大数据的关系 大数据到底什么?是不是足够多、足够全的数据就是大数据,这样的理解对不对?其实大数据是人为造出来的一个词,无法像科学定义那样精准。今天我们说说数据与大数据的关系。 ...
2016-09-06用好大数据的六个秘诀 秘诀一:目标要明确 就算一个公司拥有再多的数据,也不能代表它就一定会获得商业上的成功。只有真正懂得如何利用大数据,了解到公司利用大数据可以达到什么目标,公司最终 ...
2016-09-06工业大数据的七个故事让你看见未来 工业大数据产业发展高峰论坛在杭州举办。论坛上,工业大数据相关研究者、实践者济济一堂,“晒”出了工业大数据的众多生动案例。 1、个性化西服如何“量体裁衣” ...
2016-09-06如何利用大数据解决企业与用户实际问题 2016年,拨开产业泡沫,大数据企业开始探讨如何利用大数据解决企业与用户实际问题。而这一过程中,场景应用必然会被提及。聚美物联CEO金寿江告诉数据猿记者:“大数据时 ...
2016-09-05“大数据”时代并不是掌握数据,而是利用数据 大数据可以来自方方面面,从生活中的购物交易,到工业上的生产制造;从社交网络媒体信息,到企业化管理决策大数据作为目前IT行业最重要的前进方向之一,已经吸引了众 ...
2016-09-05大数据分析在数字货币中的应用 在以网络化和数字化为基本特征的新经济时代,数字货币体系的运行日趋回归本质,表现为货币数据流的生成、流转、交换、存储、计算以及相关衍生服务。大数据的意义在于从海量数据中 ...
2016-09-05中小企业该如何获得他们所需要的大数据技术 大数据分析可以极大地改变企业经营的方式,但到目前为止,主要受益者仍是大型企业。中小企业尚未获得可观的收益。为什么大数据的优势在很大程度上并未在中小企业中显 ...
2016-09-05大数据 物联网与智慧城市三者有何关系 大数据是信息化社会无形的生产资料,其概念被社会各界不断演绎出多种版本,但关于大数据、物联网、智慧城市三者之间的关系,很多人不甚明了。对此,同方物联网产业应用本 ...
2016-09-04大数据时代下 机器学习是否会发生大变革 在人工智能界有一种说法,认为机器学习是人工智能领域中最能体现智能的一个分支。从历史来看,机器学习似乎也是人工智能中发展最快的分支之一。 大数据时代下机 ...
2016-09-04利用数据分析来提高企业绩效管理 衡量和监控企业绩效依赖于在规定的时间内界定明确的目标,计划和预算,以及评估进度,以确保企业与他们概述的目标保持一致。 在这样做时,企业可以利用有益的趋势获得更多的 ...
2016-09-04大数据用于商业决策的难点 越来越多的企业开始重视对大数据的分析与利用。据贝恩咨询公司的一份全球调研报告显示,在其调研的超过400家年营业额高于5亿美元的企业中,有大约60%的企业正积极在大数据方面进行投 ...
2016-09-04大数据能够提升用户体验的三个原因 大数据正影响着我们生活的一切,从世界的娱乐活动到我们与家人朋友的交流方式。在很大程度上,我们对这个世界上的感知都融入了这个潘多拉宝盒——大数据。好的消息是数据比以 ...
2016-09-04大数据行业应用拉开新时代序章 大数据的挖掘就像是在给用户画像。先搜集用户在网络上留下的痕迹也就是数据,然后通过技术处理对数据进行分析,得出用户的特征,洞察用户的喜好,将用户的画像渐渐越描越细。 ...
2016-09-04大数据帮企业了解客户 大数据帮企业了解客户,锁定资源,开展服务 大数据通过相关性分析,将客户、用户和产品有机串联,对用户的产品偏好,客户的关系偏好进行个性化定位,生产出用户驱动型的产品,提供客户 ...
2016-09-03在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30