丨背景 很多人对数据分析一窍不通,但想要转到这个行业;很多人对数据分析了解很多,还会说几个案例,但不知道如何落地;很多人学过统计学,但不知道如何进阶到数据分析,很多人学过计算机,但不知道如何进阶 ...
2016-10-18大数据的七个挑战 大数据挑战和机遇并存,大数据在未来几年的发展将从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。未来的大数据发展依然存在诸多挑 ...
2016-10-18大数据时代下的营销市场变革 大数据时代,市场营销怎么做,跟着小编一起看看! 大数据时代的“匠心”营销 “浮躁的互联网时代,能够坚持严谨与专注就更显弥足珍贵。想要打造一款极致的互联网产品,更应该 ...
2016-10-17如何进行实用行业研究与行业分析 老规矩,来个图文并茂基于欧洲某行的分析方法。写之前需要说明:不同机构不同方法,有时候区别可以很大(买方或卖方),同一个机构不同部门都有可能有不同的方法(equity或credit ...
2016-10-17当数据分析成了一门显学,算法会左右你的终身大事 你愿意你的终身大事被算法安排吗?如果有一天算法将比你更加了解你自己,你准备好相应的心智模块了吗?本期数据侠将比较机器学习和传统数据建模的区别,并用最 ...
2016-10-17分享 :潘多拉首位数据科学家的经验谈 各公司做法不尽相同。有些公司让所有数据科学家全都坐在一起——不管他们从事哪些工作,以便他们保持紧密沟通。有些公司甚至让数据科学家完全独立于公司其他部门,闭门解 ...
2016-10-17用好大数据实现公共管理智能化 互联网时代,数据资源已经和能源一样正日益受到重视。信息流动与分享的范围不断扩大,创造的数据价值不断增加,大数据已然成为了推动经济发展的“新内核”。 10月12日,市政府 ...
2016-10-1780%的企业没有数据,如何进行数据分析管理 近日,企业服务大会“中国的企业服务为什么没有独角兽?”在上海召开。易观副总裁受邀出席并发表了《洞察:中国大数据生态图谱2016》的主题演讲。 中国企业服务为什 ...
2016-10-16大数据如何影响商业决策 现如今,无论哪个行业的企业都在谈论的是——数据。这里说的数据不是任意的数据,而是大数据。 如今我们生活在信息经济体制中,公司采集和分析的数据越多,就能在做重要的商业决策时 ...
2016-10-16我们应该知道的九种市场营销分析方法 市场营销分析对于察觉有关商业洞察力,提高收入和盈收能力,提升品牌认知度都是必不可少的。有了正确的分析帮助,我们可以发掘新的市场、新的客户、发掘未来有发展前景的领 ...
2016-10-16对大数据的八大观点分析 越来越多程序员也涌入大数据行业,但是仔细问一些从业人员什么是大数据?鲜有人知道?就算知道的,最常引用Victor的4V理论,大量(Volume),快速(Velocity),种类多(Variety),价值(Value) ...
2016-10-16大数据真的能帮助你了解消费者购买意图吗 1.很多营销人员没有想到这一点的一个原因,就是他们根本不知道自己对购买历程的视野是可以扩大的。他们从未获取过品牌自身视角之外的数据。而现在,依靠新的技术,越来 ...
2016-10-16大数据时代保护个人隐私的5点建议 万物互联,“万能”的大数据,让我们变得“无所不知”,却也让我们所有的资料信息“无处隐私”,甚至受到生命与财产的安全威胁。而我们当前所处互联网络中所面临的这种防御不 ...
2016-10-15谁说大数据不实用?来看看数据化带来的惊喜 近年来,被「大数据」这一新词所包围,但是说来说去,由冷到热又趋冷,耳朵都听出茧子来了,除了沃尔玛超市「啤酒与尿布」的老例子,似乎并没有什么新的应用让人切身 ...
2016-10-15大数据时代 这些误区你中枪了吗 大数据,说的再多其实也还是会有很多网友对当前的大数据技术存在一些疑问和误区,比如有很多朋友会觉得只有到达Peta级别以上的才能够被称之为大数据,甚至是到达了Zeta级别才算 ...
2016-10-15新媒体行业如何利用大数据掌握受众趣味 数字信息爆炸时代,我们生活的每时每刻都在产生着数据信息。沃尔玛通过对过去一年原始交易数字的详细分析将尿布与啤酒一起销售,取得赫然的业绩;Google通过分析美国人最 ...
2016-10-15大数据时代的企业及个人隐私保护 从2014年开始大家真真正正的感觉到大数据时代的来临,每个人都能说出几个大数据的案例。什么大数据帮助奥巴马连任成功,微软大数据成功预测奥斯卡21项大奖,大数据算出来的热播 ...
2016-10-15企业怎样利用大数据提升竞争力 大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。企业怎样利用大数据提升竞争力? ...
2016-10-15大数据行业应用实时数据分析方案 如今整个商业世界都面临着新的难题,即如何处理来自各客户接触点、交易以及互动对象的大量数据。但与此同时,我们也看到了解决问题的曙光——实时数据流技术,其能够存储大量数 ...
2016-10-14趣味数据挖掘 |“被打”和“北大” 的关联 小时候喜欢读趣味数理化,所以久有一个小心愿,写一组趣味数据挖掘的科普博文。 要把数据挖掘的一些概念讲得通俗有趣,需要好的例子,正搜寻中,一个有趣的、适合解释 ...
2016-10-14在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25