“大数据”这个术语是无处不在的。无论是大企业还是小企业,新兴企业抑或是传统企业,都正在参与着这个“游戏”。海量的用户数据正在被各个网站大规模收集利用,有的公司为了能与客户交流,甚至不惜利用庞大的文本 ...
2017-01-22人们将面临大数据无法进行预测分析挑战 你是否认为大数据时代会有足够多的信息来支持建立强大分析,其实不然。有的情况中即便大量数据也不能保证基本预测的正常运行。多数时间,我们没有做到更多的事,所以只 ...
2017-01-22大数据应用之数据画像建设 大家经常听到一个词,叫做“画像”,结合具体对象就是:“用户画像”、“商品画像”、“产品画像”、“资产画像”、……。特别是大数据时代下,在实际企业中,利用大数据进行“画像 ...
2017-01-21数据分析学习笔记:数据可视化 本篇来源于书籍《数据之美—一本书学会可视化设计》的学习后整理所得。全篇主要围绕数据可视化的5个步骤展开,其中重点内容是第三步:“应该使用哪种可视化形式”。本篇旨在带你 ...
2017-01-21在恰当的地方,使用恰当的数据! “大数据”已经成为21世纪商业的代名词。聚拢大量数据的浪潮正变得愈加猛烈。公司无论所属行业和规模大小,都竭力想要实现招聘自动化,将流程数字化,并且打造出客户和求职者的 ...
2017-01-212017年数据科学发展中值得一入的坑 在数据科学领域,大数据和物联网正在持续快速增长着。目前的商业中已经逐渐可以把不同来源的数据拼凑在一起,并获得更多的信息,这也就意味着数据将变得更有意义。在开发新的 ...
2017-01-212017年,这两个大数据岗位一定会火 讨论哪个大数据岗位会火之前,我们先来简单的分析一下大数据领域的行情,这里重点说一下当前的情况。 2016年,互联网行业遇到了资本寒冬,抛开大公司不说,一些中小型的公 ...
2017-01-21大数据让就业有迹可循 本文就美国大学学生就业模型作了分析,提出了我国高校就业服务生态模型,通过学生在校期间产生的数据,形成学生数据生态闭环,辅助学生进行职业生涯规划,提高学生整体就业质量。综合利用 ...
2017-01-21数据分析师的分布、特征、薪酬、技能及教育背景概览 醒来发现自己成了数据分析师是怎样的一种体验?今天我们要说的是数据分析师,这个随着大数据发展走入我们视野的职业,应该可以算得上是程序员的一个进化分支 ...
2017-01-20善用大数据带给我们的洞察力 分析大数据本身不是目的,更重要的是通过它来“解码”公众需求,让公共服务始终有温度 当空间地理与大数据相遇,会发生怎样奇妙的化学反应?“济南成为2016年度最堵城市”“华为 ...
2017-01-202017数据分析市场的10个预测 在2016年,是数据准备和分析突破的一年。采用自助式分析解决方案的速度飞快发展起来,因为业务用户需要能够分析数据而不必再依赖IT。 自助数据准备工具也经历了快速增长,因为越 ...
2017-01-20大数据助力“四个全面”战略布局 党的十八大以来,以习近平总书记为核心的党中央提出并确立了全面建成小康社会、全面深化改革、全面依法治国、全面从严治党的战略布局。这是党在总结新时期中国特色社会主义建设 ...
2017-01-20随着信息技术和网络及各类传感设备、海量存储技术的飞速发展,数据的定义和收集方式产生了革命性的变化,大数据应运而生。相比传统分析方法,大数据技术拥有无可比拟的优势,然而大数据技术所引发的一系列关于认知 ...
2017-01-20大数据时代企业如何合法使用隐私数据 越来越多的企业将大数据能力视为企业实力的重要组成部分,但时有发生的隐私泄露事件也表明,在大数据时代,如何对待隐私数据已经成为一项不可避免的课题。 趣店CRO粘旻 ...
2017-01-20任务1:强化大数据技术产品研发 要以应用为导向,突破大数据关键技术,推动产品和解决方案研发及产业化,创新技术服务模式,形成技术先进、生态完备的技术产品体系。加快大数据关键技术研发,培育安全 ...
2017-01-19大数据时代感受人文和科技的跨界之美 用大数据和科学理论来重新解读人类历史,一直是张首晟老师的爱好。本文深刻阐述了大数据时代物理、科技和人文的跨界之美和意义所在。美国《独立宣言》的第一句话,也是涵盖 ...
2017-01-19大数据时代零售企业如何进行精确营销 近年来,同质化商品、频繁的价格战、店铺租金上涨、电子商务的冲击等因素导致零售企业利润不断下降,在2015年出现了零售业关店潮这一现象,大量零售门店关门,2016年还在延 ...
2017-01-19大数据营销的7个雷区,你踩中了几个 话说,都岁末年关了,该歇着了吧。可互联网人偏偏要屡出大招。比如,今天营销界名人李叫兽(李靖)自爆已经连同自己和整个团队一起卖给了百度,他还出任了百度副总裁,才25岁 ...
2017-01-192017年大数据发展的十大趋势预测 | 2016年大数据领域成果及趋势 新的大数据技术正在进入市场,而一些旧技术的使用还在继续增长。本文涵盖大数据未来发展的十大趋势,机器学习、预测分析、物联网和边缘计算等这 ...
2017-01-19大数据条件下的创新评估 一种方案可以获得大数据,只要设计这个系统是可以很容易采集数据,可以很清楚进行分析,接下来可以设计出针对性的解决方案。另一种方法是很简单的低成本,用现在的创新术语来讲就是朴素 ...
2017-01-19Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23