大数据不会主动为你做的几件事 现在已经开始有越来越多的企业开始对大数据寄予厚望,希望能够通过大数据的技术优势来长期解决企业在业务方面的问题,使得企业的竞争优势更加明显,同时企业的产品也更有竞争力。 ...
2017-02-16拒绝沉默大多数 从观望大数据的企业谈起 大数据已经是现在企业管理者必谈的话题之一了,根据世界权威市场调查机构Gartner最新的一份调查结果显示,在全球范围内大数据技术的投资规模正在不断扩大,在受访者当中 ...
2017-02-16救世主不好当 信息化时代大数据的新任务 信息化成为了国内外很多企业级厂商热议的话题之一,同时,信息工业科技的发展也促使了IT行业很多梦想的诞生和实现,在技术飞速发展的今天,信息安全也已经成为了我们面 ...
2017-02-15城市的实践者 从衣食住行深度分析大数据 1“衣食”模式的改变 北京城,作为一个集文化、金融、政治、科技等于一身的城市,在悠久的历史背后让我们也看到了充满活力的一面。生活在北京这座城市当中, ...
2017-02-15大数据的这些误区你躺枪了哪个 大数据,说的再多其实也还是会有很多网友对当前的大数据技术存在一些疑问和误区,比如有很多朋友会觉得只有到达Peta级别以上的才能够被称之为大数据,甚至是到达了Zeta级别才算是 ...
2017-02-15不谈大数据的“互联网+建筑”都是耍流氓 今年是传统企业纷纷转型互联网的一年。建筑业也不甘其后纷纷与“互联网+”、BIM、大数据、智能化、移动通信、云计算、物联网等高新词汇联系在了一起。与此同时,随着政 ...
2017-02-15大数据的互联网化 能源行业如何利用数据发展 1能源行业大数据的互联网化 马云曾经说过一句话,当今以及未来的世界当中,最珍贵的能源就是大数据。获取你认为这句话有点以偏概全了,但是我们不可否 ...
2017-02-15大数据时代商业银行数字化转型 大数据时代的来临,催化了互联网金融的发展,随着大数据技术日益广泛应用,对金融生态和金融格局都将产生深刻影响。国家层面对大数据发展给予高度重视,2015年8月,国务院印发《促 ...
2017-02-15R源自90年代S编程语言的一个开源版本,主要用于统计分析、绘图、数据挖掘,在高校及商业统计分析领域非常受欢迎。最新的O’Reilly数据科学薪资调查也将R列为最高薪的数据科学家使用技能之一。当然,R最吸引人的地方 ...
2017-02-15如何做一名“称职”的数据专家 众所周知,在数据挖掘课题中,很大比重的工作量集中在数据信息收集、整合和探索阶段,挖掘模型的稳定性和提升度很大程度上依赖于大宽表的数据质量。 我们数据专家的作用就是要 ...
2017-01-31使用Python进行大数据分析 毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指 ...
2017-01-31大数据分析在智慧零售之应用 零售业在大数据的推波助澜下,早已颠覆了过去的销售模式,带来的是新一波智慧零售,主要是以个别消费者为核心,利用大数据分析其需求特性,并藉此提供个别化之营销策略,以期透过个 ...
2017-01-31物流行业的大数据发展与应用 随着大数据时代的到来,大数据技术可以通过构建数据中心,挖掘出隐藏在数据背后的信息价值,从而为企业提供有益的帮助,为企业带来利润。面对海量数据,物流企业在不断增加大数据方 ...
2017-01-31这一年来,数据科学家都用哪些算法 在“数据为王”的今天,越来越多的人对数据科学产生了兴趣。数据科学家离不开算法的使用,那么,数据科学家最常用的算法,都是哪些呢? 最近,著名的资料探勘信息网站KDnu ...
2017-01-31大数据入门,这10点你是必须要知道的 1、云计算与大数据是什么关系? 云计算的关键词在于‘整合’,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他 ...
2017-01-31数据分析师的职业发展现状 前不久看到这样一条新闻“未来广告是否有效的关键是数据分析”不只是广告营销,越来越多的行业看重数据分析这一领域,在信息爆炸的今天,一个优秀的数据分析师可以帮助企业根据现有数 ...
2017-01-26互联网为什么要做数据分析师 在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量达到3500万亿GB;海量的历史 ...
2017-01-26大数据行业发展状况分析 大数据是指不用随机分析法(抽样调查)这样的捷径,而采用对所有数据进行分析处理的新的数据处理方式,与传统的BI数据分析相比,大数据分析能力更强,处理速度更快,更适用于互联网时代下 ...
2017-01-26从事数据分析师须知 最近在论坛上看到一些高校毕业生咨询数据分析的就业,不少人对这个岗位兴趣浓厚、趋之若鹜,看起来大家都意识到这是份很吃香的工作。一来待遇肯定不差,听起来就很高大上;二来随着云计算大 ...
2017-01-26数据分析有哪些机会领域 当“网站分析”发展到“数据智能“,毫无疑问,数据分析人员也工作也应该发生一些转变,过去的工作主要是以网站为中心并制定渠道的具体战术,而在将来则需要负责更具战略性的、面向业务 ...
2017-01-26CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14