大数据不会主动为你做的几件事 现在已经开始有越来越多的企业开始对大数据寄予厚望,希望能够通过大数据的技术优势来长期解决企业在业务方面的问题,使得企业的竞争优势更加明显,同时企业的产品也更有竞争力。 ...
2017-02-16拒绝沉默大多数 从观望大数据的企业谈起 大数据已经是现在企业管理者必谈的话题之一了,根据世界权威市场调查机构Gartner最新的一份调查结果显示,在全球范围内大数据技术的投资规模正在不断扩大,在受访者当中 ...
2017-02-16救世主不好当 信息化时代大数据的新任务 信息化成为了国内外很多企业级厂商热议的话题之一,同时,信息工业科技的发展也促使了IT行业很多梦想的诞生和实现,在技术飞速发展的今天,信息安全也已经成为了我们面 ...
2017-02-15城市的实践者 从衣食住行深度分析大数据 1“衣食”模式的改变 北京城,作为一个集文化、金融、政治、科技等于一身的城市,在悠久的历史背后让我们也看到了充满活力的一面。生活在北京这座城市当中, ...
2017-02-15大数据的这些误区你躺枪了哪个 大数据,说的再多其实也还是会有很多网友对当前的大数据技术存在一些疑问和误区,比如有很多朋友会觉得只有到达Peta级别以上的才能够被称之为大数据,甚至是到达了Zeta级别才算是 ...
2017-02-15不谈大数据的“互联网+建筑”都是耍流氓 今年是传统企业纷纷转型互联网的一年。建筑业也不甘其后纷纷与“互联网+”、BIM、大数据、智能化、移动通信、云计算、物联网等高新词汇联系在了一起。与此同时,随着政 ...
2017-02-15大数据的互联网化 能源行业如何利用数据发展 1能源行业大数据的互联网化 马云曾经说过一句话,当今以及未来的世界当中,最珍贵的能源就是大数据。获取你认为这句话有点以偏概全了,但是我们不可否 ...
2017-02-15大数据时代商业银行数字化转型 大数据时代的来临,催化了互联网金融的发展,随着大数据技术日益广泛应用,对金融生态和金融格局都将产生深刻影响。国家层面对大数据发展给予高度重视,2015年8月,国务院印发《促 ...
2017-02-15R源自90年代S编程语言的一个开源版本,主要用于统计分析、绘图、数据挖掘,在高校及商业统计分析领域非常受欢迎。最新的O’Reilly数据科学薪资调查也将R列为最高薪的数据科学家使用技能之一。当然,R最吸引人的地方 ...
2017-02-15如何做一名“称职”的数据专家 众所周知,在数据挖掘课题中,很大比重的工作量集中在数据信息收集、整合和探索阶段,挖掘模型的稳定性和提升度很大程度上依赖于大宽表的数据质量。 我们数据专家的作用就是要 ...
2017-01-31使用Python进行大数据分析 毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指 ...
2017-01-31大数据分析在智慧零售之应用 零售业在大数据的推波助澜下,早已颠覆了过去的销售模式,带来的是新一波智慧零售,主要是以个别消费者为核心,利用大数据分析其需求特性,并藉此提供个别化之营销策略,以期透过个 ...
2017-01-31物流行业的大数据发展与应用 随着大数据时代的到来,大数据技术可以通过构建数据中心,挖掘出隐藏在数据背后的信息价值,从而为企业提供有益的帮助,为企业带来利润。面对海量数据,物流企业在不断增加大数据方 ...
2017-01-31这一年来,数据科学家都用哪些算法 在“数据为王”的今天,越来越多的人对数据科学产生了兴趣。数据科学家离不开算法的使用,那么,数据科学家最常用的算法,都是哪些呢? 最近,著名的资料探勘信息网站KDnu ...
2017-01-31大数据入门,这10点你是必须要知道的 1、云计算与大数据是什么关系? 云计算的关键词在于‘整合’,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他 ...
2017-01-31数据分析师的职业发展现状 前不久看到这样一条新闻“未来广告是否有效的关键是数据分析”不只是广告营销,越来越多的行业看重数据分析这一领域,在信息爆炸的今天,一个优秀的数据分析师可以帮助企业根据现有数 ...
2017-01-26互联网为什么要做数据分析师 在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量达到3500万亿GB;海量的历史 ...
2017-01-26大数据行业发展状况分析 大数据是指不用随机分析法(抽样调查)这样的捷径,而采用对所有数据进行分析处理的新的数据处理方式,与传统的BI数据分析相比,大数据分析能力更强,处理速度更快,更适用于互联网时代下 ...
2017-01-26从事数据分析师须知 最近在论坛上看到一些高校毕业生咨询数据分析的就业,不少人对这个岗位兴趣浓厚、趋之若鹜,看起来大家都意识到这是份很吃香的工作。一来待遇肯定不差,听起来就很高大上;二来随着云计算大 ...
2017-01-26数据分析有哪些机会领域 当“网站分析”发展到“数据智能“,毫无疑问,数据分析人员也工作也应该发生一些转变,过去的工作主要是以网站为中心并制定渠道的具体战术,而在将来则需要负责更具战略性的、面向业务 ...
2017-01-26Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23