大数据在营销中的7大优势 大数据正在重塑人们所知道的业务。数据科学为大多数现代公司的决策过程奠定了基础,这正是2018年其营收在400亿美元以上的原因。营销在这方面没有什么不同。 如今,营销团队借 ...
2017-11-10复杂系统的脆弱性与大数据时代的市场计划之争 随着计算机和信息技术的发展,人类社会进入了大数据时代。人类存储数据和计算能力异常庞大,使得计划经济和市场经济的争论再一次兴起。以马云等为代表的一部分商界 ...
2017-11-10大数据与AI的融合,对于人类来说究竟是促进发展,还是加速灭亡 AI和大数据都是目前最热门的技术,如果这两者结合在一起,会发生什么呢? 研究人员正在寻找通过与AI结合将大数据提升到更高水平的方法。大数 ...
2017-11-10大数据时代下是数据思维重要,还是相应技术重要 技术做到一定程度,逐步发现自己的瓶颈。不由得开始思考这一方面的问题!到底大数据时代下,是相应的数据分析技术重要,还是相应数据思维重要? 先来说数据思 ...
2017-11-10大数据10的个常见误解:算法即预言家、大数据必须干净 也许对大数据更好的一个类比是它就像一匹意气风发的冠军赛马: 通过适当的训练和天赋的骑师,良种赛马可以创造马场记录–但没有训练和骑手,这个强大的动物 ...
2017-11-10解读:大数据分析及其数据来源 当我们谈到大数据分析,首先需要确定数据分析的方向和拟解决的问题,然后才能确定需要的数据和分析范围。大数据驱动的分析主要的挑战不是技术问题,而是方向和组织领导的问题,要 ...
2017-11-09了解大数据在人力资源和薪资中的作用 大数据为人力资源和薪资部门提供了广泛的分析可能性,但企业首先需要了解如何使用他们的新工具。 如今正在进行大数据革命:随着进入企业的数据规模,范围和速度不 ...
2017-11-09让大数据分析更有效的5种技术措施 如今,数据量越来越大。近年来,企业已经意识到数据分析可以带来的价值,并且已经开始采用。企业现在的设备几乎都在监测和测量,并创造了大量的数据,通常比企业处理的更快。 ...
2017-11-09大数据助推“最多跑一次” 作为智慧政府建设的先行省份,浙江省以“最多跑一次”改革为重要切入点和突破口,不断完善建设集约、服务集聚、数据集中、管理集成的统一数据平台。预计在2017年底之前,形成较为完整 ...
2017-11-09市场“退烧”后,大数据如何破局 过去五年,大数据理念深入人心,“用数据说话”已经成为所有人的共识,数据成了堪比石油、黄金、钻石的战略资源。 大数据这五年 五年来,人们对大数据的认识更加具 ...
2017-11-09大数据时代 如何保障征信信息合规使用 在大数据时代,汇聚了个人当前信用价值的各项信息越来越受到各行业的重视,其背后的价值不可估量。目前商业银行及各类金融机构越来越多地将业务延伸至互联网,相比于传统 ...
2017-11-08企业数据分析该从何处下手 大数据的到来提升了数据的高度,企业第一次有条件在深层次获得并使用全面的数据。数据的大规模应用正改变着企业的运营管理方式,加之市场的快速变化,企业也越来越认识到数据分析应用 ...
2017-11-08大数据时代学校管理的创新模式分析 伴随着互联网的发展,大数据的浪潮对于各个领域都产生了深远的影响,在中小学校的管理中,各类信息化管理系统已经取代传统的人工管理模式,随着信息化进程的进一步发展,如何 ...
2017-11-08大数据可能“说谎” 非结构化数据将呈现更丰富的世界 在2017年的下半年谈论大数据似乎已经没有什么新意,甚至有些令人生厌了,毕竟这个词在中国已经流行太久,形形色色的产品、平台和公司早已贴满了大数据标签 ...
2017-11-08为何大数据在当今世界如此重要 毫无疑问,各行各业因为大幅爆发的数据而正变得蒸蒸日上。在这10年中,几乎所有行业都或多或少的受到这一巨变的影响。科技渗透到各个领域,并且已经成为每个处理单元的必要元素。 ...
2017-11-08大数据时代的赚钱方法 大数据这个词,恐怕是近两年IT界炒的最热的词汇之一了,各种论坛、会议,言必谈大数据,“大数据”这个词,在IT界已经成了某果一样的“街机”或者叫“街词”,不跟风说两句“大数据 ...
2017-11-07企业大数据规划先做好小数据分析 目前国内外关于大数据的谈论很多,大多是谈运营级别的,或者说从服务端、服务方提得较多一些。笔者要跟大家交流的问题是作为各类企业尤其是客户方的企业来说,大数据跟他们有什 ...
2017-11-07物联网时代制造企业对大数据的运用分析 每个人都是数据产生者、拥有者和消费者, 有人已经预言未来的时代是一个“大数据”的时代,关注大数据的人越来越多,同时物联网的出现与发展推动了数据采集的能力,为数据 ...
2017-11-07大数据时代,石化企业应该如何进行数据分析 一、大数据应用现状 1、数据量在不断增加,且数据结构不断复杂。 根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 ...
2017-11-07大数据、数据挖掘和机器学习:为业务带来价值 大数据和数据挖掘:收集正确的数据 当焦点首先从数据存储转移到大数据的价值时,很容易收集和存储尽可能多的数据,以便尽可能在将来某个时候使用该业务。 ...
2017-11-07Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23