中国大数据争夺战已进入前所未有的高度 随着越来越多的数据被挖掘,作为掌控大量用户数据的平台以及数据转换的 大数据 将引发的科技巨头们抢夺的新战场。在这些争夺背后,作为平台数据的缔造者——广大的个人用 ...
2017-11-18实现数据科学研究结果可复制的十条规则 一群科研人员在一篇论文中,讲述了可复现性计算研究的十条规则。如果遵循这些规则,应该会产生更具可复现性的结果。 所有的数据科学都是研究。仅仅因为研究结果 ...
2017-11-18导致大数据项目失败的4大痛点及应对策略 大数据项目通常不会因为单一的原因而失败,而且肯定不会仅仅出于技术原因。这些因素的组合有助于破坏大数据部署。业务战略、人员、企业文化、分析方法或分析工具的细微 ...
2017-11-18大数据可能带来思维模式的变化 所谓大数据,它是信息化到一定阶段之后,必然出现的一个现象,主要是由于信息技术的不断廉价化,以及互联网及其延伸所带来的无处不在的信息技术应用所带来的自然现象。基本上,大 ...
2017-11-17大数据平台助力核与辐射安全监管 核能开发利用是大国发展的战略必争之地,也是调整能源结构、应对气候变化和建设生态文明,进而确保国家安全的重要手段。虽然我国核与辐射安全监管能力不断提升,但仍面临诸多挑 ...
2017-11-17未来战争:用大数据夺取制信息权 信息战打的就是信息流的战争。从整个信息流的转换来看,谁控制了最真实的信息流,谁就控制了这场战争的主导权。夺取制信息权已经成为夺取制空权、制海权的先决条件,是未来战争 ...
2017-11-17综述:大数据分析面临的机遇与挑战 数据分析给现代社会带来了新的机遇与挑战。一方面,与传统研究侧重于揭示事物的共性不同,大数据研究将有助于人们发现事物的个体特性,并针对每一个体的特性给出个体化的解决 ...
2017-11-17打造大数据与人工智能正循环 我们在经历一场人工智能变革 “人工智能在当下十分火热,语音识别、人脸识别等能力取得了长足的发展的和进步。”百度深度学习实验室杰出科学家徐伟表示。 如今,大数据的发展 ...
2017-11-17从历史变革中认识和发展大数据 “大数据”的概念从问世到现在已有5年历史,这个概念从诞生到发展在全球引起了一次又一次热潮,经久不衰。为什么会这样? 从历史和全局战略认识大数据 大数据的浪潮翻涌至 ...
2017-11-16大数据产业难在价值变现 大数据产业属于“附加值”较高的产业,盈利能力较强。随着中国智能制造2025战略的落地和推广,以及中国对政务效率提升的要求,工业大数据和政务大数据将成为未来大数据产业发展的热点。 ...
2017-11-16大数据让智能制造成有源之水 人工智能要超越、统治人类,目前来看难以实现,很多处理能力是晶体芯片的物理特性没有办法突破的。从系统理论的九个层级来看,第一层级是静态系统,然后是简单动态系统,到第九层级 ...
2017-11-16基因大数据深度挖掘面临挑战 作为一种新型基因检测技术,基因测序能从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性、个体的行为特征及行为合理性。基因测序技术能锁定个人病变基因,予以提前预防 ...
2017-11-16大数据技术赋能金融业创新与应用升级 大数据时代将带来人类生产力的又一次大解放和生产效率的巨大提高,移动互联网络将成为实现中国梦的重要载体,这本质上需要相互联通相互融合的大金融体系。 然而,多年 ...
2017-11-16Python爆红的六大原因 无论你是否清楚这个事实,Python实际上已经不是一门年轻的编程语言了。虽然它也不如其它一些语言那么年长,但它仍然比大部分人所想的要更老一些。它第一次发布的时间是在1991年,虽然这些 ...
2017-11-15大数据将如何颠覆信任危机 一、统计数据从解决争议的“帮手”成了扩大分歧的“推手” 理论上统计数据应该有助于解决争议,是每个人观点的支撑依据。无论人们的政治观点如何,他们都可以在数据上有一致 ...
2017-11-15工业大数据如何改变制造业 工业大数据是互联网、大数据和工业产业结合的产物,是中国制造2025、工业互联网、工业4.0等国家战略在企业的落脚点。对于制造业而言,了解行业大数据产生的背景,归纳行业大数据的分 ...
2017-11-15大数据正在改变汽车行业的5种方式 大数据在十年前是一个有趣的概念,而现在却成为现代企业的一个普遍特征。数据从根本上讲是有价值的,这取决于所收集的内容以及如何使用,数据可以给企业带来更好的商业洞察力 ...
2017-11-15大数据,入行恰逢其时 大数据,入行恰逢其时,近几年,大数据不可谓不火,尤其是2017年,发展大数据产业被写入政府工作报告中,大数据开始不只是出现在企业的战略中,也开始出现在政府的规划之内,可以说是互联网 ...
2017-11-14大数据与智能交通的“美丽邂逅” 智能交通领域是大数据应用的天然沃土。而大数据和人工智能正在成为推动交通智能化、自动化的核心力量。 一、大数据AI“上路” 2016年,烟台高速交警支队正式接管全市高 ...
2017-11-14大数据应用都面临哪些挑战?我们分析了这十个垂直行业 大数据已经成为过去几年中大部分行业的游戏规则,行业领袖,学者和其他知名的利益相关者都同意这一点, 随着大数据继续渗透到我们的日常生活中,围绕大数 ...
2017-11-14Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23