大数据风控多数只是摆设 互联网时代效率为王,传统风控占用大量资源,终被舍弃。 不知何时,大数据技术兴起。 大量数据多维度、智能、批量处理和标准化的执行,另其在金融风控里占有了一席之地。 ...
2017-11-30数据分析方法论:你真的懂 Session(会话) 分析吗 在数据分析领域,Session是一种专业的数据分析。对于有数据驱动意识的互联网人来说,这并不陌生——Session 即会话,是指在指定的时间段内在网站上发生的一系 ...
2017-11-3090%的大数据产品是伪需求 我们看似已经进入大数据时代,到处都是各种各样的大数据产品。但我可以负责任的讲,90%的大数据产品—— 要么,是闭门造车、臆想出来的“伪需求”,没有真正解决客户的需求和痛点, ...
2017-11-29如何将大数据利用好?看看硅谷的专家怎么说 1、大数据仅仅是整体ROI的一小部分 2、揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息 3、我们不断加入新的数据可视图与解释,树立 ...
2017-11-29如何成功实现数据治理 这些问题正变得越来越重要,因为企业依靠收集、存储和分析大量数据,来达成业务目标。数据变成了企业的盈利工具、业务媒介和商业机密。数据泄露会导致法律纠纷,还会令消费者对公司的核心 ...
2017-11-29大数据如何监测管理现代农业 随着海量信息的爆发,农业跨步迈入大数据时代。如同其他行业的大数据应用,通过技术手段获取、收集、分析数据,能够有效地解决农业生产和市场流通等问题。 在大数据的推动下,农 ...
2017-11-29多大的数据才算「大数据」 我们的时代是数据日益渗透生活的时代,大数据与人们的生产生活有着越来越密切的关系。近期来,不少读者向本报反映,希望了解关于大数据的许多问题,我们从中梳理了六个问题,组织专业 ...
2017-11-29数据工作的科普总结 首先说,这是一篇关于数据工作的科普文字,是我从事数据工作三年的一个小总结,因为不时会有人咨询我一些小问题,于是我大致整理了一下,主要是说了数据工作到底都包含了什么,其中关于数据 ...
2017-11-28大数据成行业核心竞争力,大同行成就个人财富管理的实现 随着互联网大数据、云计算、人工智能这些新兴网络信息技术的升级和广泛应用,科技金融正在重塑互联网金融业。2016年国内金融科技领域累计融资金额达875 ...
2017-11-28浅谈金融大数据 金融大数据是大数据技术在金融行业的应用,也指在经济和金融活动之中产生的海量数据。金融大数据的应用带动了金融行业的转型,成为了行业新的驱动力和增长模式。 金融大数据的行业影响 ...
2017-11-28大数据环境下该如何优雅地设计数据分层 发个牢骚,搞大数据的也得建设数据仓库吧。而且不管是传统行业还是现在的互联网公司,都需要对数据仓库有一定的重视,而不是谈一句自己是搞大数据的就很厉害了。数据仓库 ...
2017-11-28工业互联网怎么让大数据产生价值 在经历了长达30年的经济快速发展之后,现在,中国需要一个全新的增长模式。快速的城镇化和工业化让数亿人摆脱了贫困,中国人的人均寿命提升了十年,中国一举成为世界上最大的制 ...
2017-11-28数据统一的七原则 “所有的可规模化系统,都必须自动进行绝大多数的操作。” ♦ “‘模式为先’(schema-first)的产品永远无法规模化。唯一的选择是采用‘模式为后’(schema-last)的产品。” ♦ ...
2017-11-27分析非结构化数据的10个步骤 如今,数据分析正在成为企业发展的重要组成部分。企业必须对结构化和非结构化数据有所了解,才能更好地为业务发展做出正确决策。 以下是帮助企业分析非结构化数据的10个步骤: ...
2017-11-27为什么说大数据一定会从ABC里最先掉队 人工智能(AI),大数据(bigdata)和云计算(cloudcomputing)三大技术被认为是当今互联网争夺的关键点。而三大技术中中争议最多的在于大数据技术,被夸大的效果和局限性 ...
2017-11-27银行如何通过大数据预测并防止用户流 用户流失已经成为产品运营的一项重要KPI “全球有50%的用户已经更换或者正准备更换他们使用的银行。在美国和加拿大,消费者变更自己银行的比例正在上升。” —— ...
2017-11-27下一代数据分析将如何改善企业与客户的互动 2000年,彼得·莱曼(Peter Lyman)和哈尔·瓦里安(HalR. Varian)开展了一项史无前例的研究。用计算机存储术语来说,他们的目标是弄清楚全球每年产生多少原始数据 ...
2017-11-27发挥大数据及其产业在推动发展方式转变上的作用 大数据时代的到来,互联网成为基础设施,数据变成重要资源,这不仅意味着海量、多样、快速的数据处理和技术创新,更为重要的是改变了传统要素的组合方式。这种变 ...
2017-11-27关于大数据的一些真知灼见 大数据很强大,但还是有很多人仍然不知道它到底是什么。让我们来学习大数据的真实表现,以及如何更好地促进企业转型。 或许我们经常听到有人讲大数据,但仍然有很多人不知道它到 ...
2017-11-26大数据面临的风险和现存问题 “大数据”无疑是当下的热门术语,提及数据分析必谈大数据,这是对大数据和数据分析的双重误解,面对一个流行概念本身所许诺的前景和它所代表的商业利益,学界应保持高度的真诚和怀 ...
2017-11-26Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23