
分析非结构化数据的10个步骤
如今,数据分析正在成为企业发展的重要组成部分。企业必须对结构化和非结构化数据有所了解,才能更好地为业务发展做出正确决策。
以下是帮助企业分析非结构化数据的10个步骤:
1. 确定一个数据源
了解有利于小型企业的数据来源非常重要。企业可以使用一个或多个数据源来收集与其业务相关的信息。而从随机数据源收集数据并不是一个好办法,因为这可能会破坏数据,甚至丢失一些数据。因此,建议企业在开始收集数据之前调查相关数据源。企业可以采用一些在线大数据开发工具收集数据。
2. 管理非结构化数据搜索工具
收集到的结构化或非结构化的数据在使用上会有所不同。查找和收集数据只是一个步骤,构建非结构化数据搜索并使其有用是另一回事。第二步与收集数据同样重要,但如果管理不当,可能会对客户和自己的企业产生负面影响。因此,企业在拥有太多非结构化数据之前,先找到一个良好的业务管理工具。
3. 消除无用的数据
在收集数据并实现结构化之后,消除无用的数据是第三个步骤。虽然大多数数据会进一步促进业务的发展,但有时候也可能是有害的。如果企业的非结构化数据在企业的硬盘驱动器中存储或在备份上占用太多空间,这可能会影响企业的业务发展。消除无用的数据可以进一步减少混淆,避免浪费时间。
4. 存储数据准备
数据准备意味着要处理在数据中删除所有的空白,格式化等问题。现在,当企业拥有所有的数据时,不管是否对业务有用,一旦准备好数据,就可以开始整理一堆有用的数据,并索引非结构化数据。
5. 采用数据堆栈和存储技术
消除无用的数据后,堆叠数据是理想的下一步。请务必使用最新的技术来保存和堆叠数据,以便企业和正在使用数据的员工能够轻松获取最重要的数据。另外,需要确保有一个维护和更新的数据备份和恢复服务。
6. 保存所有数据直到被存储
在删除任何东西之前,无论是结构化的还是非结构化的数据,请务必保存。近期频发的自然灾害已经证明,拥有一个更新的数据备份恢复系统是必不可少的,尤其是在危机时刻。企业可能不知道其所有数据都将被删除。所以,提前做好准备,要经常保存其数据。
7. 检索有用的信息
在正确进行数据备份之后,企业可以恢复数据。这一步很有用,因为在转换非结构化信息之后,企业还需要检索数据。
8. 本体评估
如果可以显示信息来源与提取的数据之间的关系,那就最好不过了。这将有助于企业提供有关数据组织的有用信息,企业需要能够解释其所采取的步骤和流程,因此请记录下来,以便识别模式,并与流程保持一致。
9. 记录统计
通过上述所有步骤将非结构化数据变成结构化数据后,就可以创建统计信息了。对数据进行分类和分段以便于使用和学习,并为将来的使用创造一个良好的流程。
10. 分析数据
这是索引非结构化数据的最后一步。在所有的原始数据实现结构化之后,就应该分析和做出与业务相关且有益的决策。索引还可帮助小型企业为将来的使用制定一致的模式。
这些不是数据实现结构化的唯一步骤。但是,它们被证明是可以工作并且创建一致的模式。非结构化的数据可能会给小型企业带来很多垃圾邮件,所以希望可以帮助缓解因存储数据混淆而造成的一些压力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11