京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何监测管理现代农业
随着海量信息的爆发,农业跨步迈入大数据时代。如同其他行业的大数据应用,通过技术手段获取、收集、分析数据,能够有效地解决农业生产和市场流通等问题。
在大数据的推动下,农业监测预警工作的思维方式和工作范式发生了根本性的变化,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。本期嘉宾将带您了解大数据时代下,农产品监测预警如何运行以及未来面临的机遇。
大数据走进农业领域
数据库专家、图灵奖得主吉姆·格雷提出,数据密集型计算成为继试验科学、理论科学、计算科学之外的科学研究第四范式。大数据被学术界正式提出始于2008年9月《自然》杂志发表的“Big Data”系列专题文章,介绍了大数据应用所带来的挑战和机遇。
人们围绕研究数据的海量增加展开讨论。2011年,《科学》杂志刊登“Dealing with Data”专题,指出分析数据的能力远落后于获取数据的能力。
2012年3月,美国政府公布了“大数据研发计划”,基于大数据推动科研和创新。在我国,2012年5月香山科学会议第424次会议以“大数据”为主题,认为大数据时代已经来临,大数据已成为各行业共同面临的大问题。同年11月,香山科学会议第445次会议以“数据密集时代的科研信息化”为主题,讨论“大数据”时代的科研信息化问题。
这些事件都标志着“大数据”走入我们的生活。那么,大数据在农业中的应用如何?许世卫表示,“农业大数据是大数据在农业领域的应用和延展,是开展农产品监测预警工作的重要技术支撑。”
在他看来,农业大数据不仅保留了大数据自身具有的规模巨大、类型多样、价值密度低、处理速度快、精确度高和复杂度高等基本特征,还使得农业内部的信息流得到了延展和深化。
数据作为一种战略资源,可以有效地解决农业生产面临的复杂问题,从数据的获取、收集到分析,能够事半功倍地解决农业生产问题。
许世卫举例道,如通过传感器、作物本体检测手段,获取了土壤中的氮磷钾肥力等大量数据,对数据进行分析整理后可以有效指导农业生产中的施肥量、施肥时间等问题,进行合理规划,得出最合适的投入量,从而提高生产效率。
再如,大数据能够提前预测到未来市场的供给需求,可以有效降低生产投入并采取适当的措施进行智能化生产,对平抑物价起到调节作用。
大数据是监测预警的基础支撑
许世卫指出,农业大数据的数据获取、采集渠道和应用技术手段,无法通过人工调查得到数据,而需要依靠土壤传感器、环境传感器、作物长势生命本体传感器等手段支撑。由于技术更新、成本下降,使得农业有关生产市场流通等数据获取能力大幅提升。
“大数据使得农业进入全面感知时代,用总体替代样本成为可能;农业生产获得更多依靠数据的支撑,从此进入智慧农业时代;大量的数据可以优化生产布局,优化安排生产投入;大数据时代下,市场更有利于产销对接,在消费环节减少浪费以及减少产后损失。”许世卫说。
此外,大数据给农业的管理也带来变化。过去的农业管理主要依靠行政手段指导和安排生产,大数据有利于分析提取特征、总结趋势,通过市场信号的释放引导市场进而引导生产。
许世卫表示,农业大数据是现代化农业的高端管理工具。所谓监测预警就是监测数据,贯穿于农产品从生产到流通到消费到餐桌整个过程的产品流、物资流、资金流、信息流,使产销匹配、生产和运输匹配、生产和消费匹配。
农产品监测预警也是对农产品生产、市场运行、消费需求、进出口贸易及供需平衡等情况进行全产业链的数据采集、信息分析、预测预警与信息发布的全过程。
农产品监测预警还是现代农业稳定发展最重要的基础,大数据是做好监测预警工作的基础支撑。农业发展仍然面临着多重不安全因素,急需用大数据技术去突破困境。
这主要体现在:农业生产风险增加,急需提前获取灾害数据,早发现、早预警;农产品市场波动加剧,“过山车”式的暴涨暴跌时有发生,急需及时、全面、有效的信息,把握市场异常,稳定市场形势;食物安全事件频发,急需全程监管透明化,惩戒违规行为。
可以说,农产品监测预警对大数据的需求是迫切的。
农产品监测效果显著
农产品监测效果显著,大数据功不可没,主要体现在监测对象和内容更加细化、数据获取更加快捷、信息处理分析更加智能、数据服务更加精准等。
随着农业大数据的发展,数据粒度更加细化,农产品信息空间的表达更加充分,信息分析的内容和对象更加细化。
农业系统是一个包含自然、社会、经济和人类活动的复杂巨系统,在其中的生命体实时的“生长”出数据,呈现出生命体数字化的特征。农业物联网、无线网络传输等技术的蓬勃发展,极大地推动了监测数据的海量爆发,数据实现了由“传统静态”到“智能动态”的转变。
在大数据背景下,数据存储与分析能力将成为未来最重要的核心能力。未来人工智能、数据挖掘、机器学习、数学建模、深度学习等技术将被广泛应用,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。
如中国农产品监测预警系统(China Agricultural Monitoring and Early Warning System,CAMES)已经在机理分析过程中实现了仿真化与智能化,做到了覆盖中国农产品市场上的953个主要品种,可以实现全天候即时性农产品信息监测与信息分析,用于不同区域不同产品的多类型分析预警。
在大数据的支撑下,智能预警系统通过自动获取农业对象特征信号,将特征信号自动传递给研判系统。研判系统通过对海量数据自动进行信息处理与分析判别,自动生成和显示结论结果,发现农产品信息流的流量和流向,在纷繁的信息中抽取农产品市场发展运行的规律。最终形成的农产品市场监测数据与深度分析报告,将为政府部门掌握生产、流通、消费、库存和贸易等产业链变化、调控稳定市场提供重要的决策支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16