
从历史变革中认识和发展大数据
“大数据”的概念从问世到现在已有5年历史,这个概念从诞生到发展在全球引起了一次又一次热潮,经久不衰。为什么会这样?
从历史和全局战略认识大数据
大数据的浪潮翻涌至今,我认为有两个重要因素在起推动作用。第一个是人类社会在发展过程中对信息的渴求。在人类社会发展的所有时间里,信息一直是人和人类社会发展的最重要的内容。但是为什么直到5年前才“突然”出现大数据的概念?就是第二个因素——以传感技术、互联网、移动智能终端为代表的一系列新的信息技术,使得信息的获取、利用、集聚在数量上发生了突飞猛进的变化。
从这样的角度去分析,由于技术和信息内在的联系,我们会看到这两支力量在未来大数据为代表的信息时代的重要性将会进一步凸现,这是历史的角度。
我们还需要从全局的角度再来看一下大数据。2011年大数据概念产生的时候,当年4月份英国《经济学人》刊登了一篇专题文章论述“第三次工业革命”,指出大数据在其中发挥着重要作用。
是这样吗?至少我们看到了一系列重大变化:产业互联网、工业4.0、先进制造业、智能制造、中国制造2025……从中国2008年开始持续推进两化融合到两化深度融合,从电子商务到3D打印,从远程治疗到智慧治疗,从远程教育到智能教育……一系列经济和社会发展的新概念都在发生变化,我们从这样的发展变革中看到所有这些变化背后都有大数据在其中发挥着极其重要的作用。
为什么我们要从这两个角度去看大数据?由于技术进步和社会发展的需求,人类社会发展进入新的历史阶段,新的基础性技术力量和新的资源概念正在诞生。这个新的技术力量使信息技术和工业技术融合在一起,使我们从产品服务、生活管理等方面有了一个迈上新台阶的生产力构建。这个生产力构成的背后是人类社会自工业革命以来,由物质和能源建设的进步推动的社会发展演变成由能源、信息、产业三种资源共同推动社会的发展。
因此,大数据的热潮有其必然性、深刻性和广泛性。因此我们要重视大数据,用好大数据,否则便不能跟上历史发展的潮流。
从问题和价值导向来推动大数据产业
大数据技术我们面临什么问题?价值在哪?制高点在哪?
从技术的角度来看,主要有两大问题:一是大数据以每隔几年提升一个数量级的角度看,如今的计算机处理体系——以芯片为基础的处理体系机构是不是适应大数据发展的需要?答案很清晰,不是。迄今为止,以X86为代表、以ARM为代表、以存储芯片为代表的三个芯片架构从逻辑上来说都不符合大数据处理的需求,所以要从芯片开始重构适合大数据发展的处理需求。也即,要有新的芯片和新的处理结构,这是问题价值制高点。当真正满足大数据处理的芯片被设计出来,谁就站上了制高点。
从产业角度看,大数据产业大概可以分为两类:一类是“技术变成产业”,就像当年数据库管理系统变成了数据库公司,当真正的大数据处理芯片和计算架构形成时还将会形成新的产业;另一类是各个企业、机构甚至个人——以后我们很多“个人”都可以变成大数据的拥有者。
千万不要小看这点,我们对历史总是很容易健忘。20年前,很多机构包括中央部门,数据库量级是以G为代表的,而今个人都可以拥有T级的数据。这样的企业、机构、个人如何使数据管理应用成本更低、效率更高,这需要产业的支撑。因此谁能为这些“个体”的大数据应用提供便利,谁就会在发展过程中形成增值的发展基础。
然而从应用的角度看,大数据最重要的含义不在上述技术和产业,而是在于,所有企业、机构和个人如何将大数据变成我们提升能力、提升竞争力、提升生活质量的来源。那么在这个命题上,当前大数据应用的主要问题是什么?
我认为第一个问题是,数据有没有用、能不能用,能不能变成提高劳动生产力和提高市场占有率、提高创新能力、降低成本提升效率的源泉。这是社会进步的根本所在,也是大数据的本质所在。
所以,不管是企业还是机构,在讲大数据应用的时候,首先要解决的问题是“大数据能贡献什么价值”,然后通过这样的分析再去看大数据在哪,怎么才能得到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26