
企业大数据规划先做好小数据分析
目前国内外关于大数据的谈论很多,大多是谈运营级别的,或者说从服务端、服务方提得较多一些。笔者要跟大家交流的问题是作为各类企业尤其是客户方的企业来说,大数据跟他们有什么关系,或者说作为企业方怎样去参与,这是企业方现在面临的最大问题。
这个问题的答案重点在于大数据应该从小数据开始。因为现在很多企业面临的最大问题不是怎么用大数据,而是内部的一些小数据整合出现问题,或者小数据都没用好的情况下怎么用大数据。大数据应该是从小数据逐渐演变上去的,是一个正常的生态,而不是瞬间变化的。大数据这个概念跟自媒体的概念类似,需要企业自己去建设,而不是从一开始就想着依靠别人。很多企业在谈自媒体的时候,像谈别人的事情一样。比如一谈自媒体,就觉得那是第三方提供的一个平台,大家在那儿发发牢骚。自媒体是自己的媒体,企业自己也要参与进去。同样大数据不是别人的大数据,我们假设有一个第三方提供了大量的数据,有很多很多信息,CI、BI之类的很多模块化东西供我们来用。如果这样的话,你有,竞争对手也有,你能得到的东西,竞争对手也能得到的情况下,就不能称之为核心竞争力。大数据作为企业来说要变成自身的一个竞争力,企业必须得建立自己的企业级的数据。
要做大数据,首先要了解自己的企业,或者自己所在的行业的核心是什么。我们现在经常发现,有很多企业在竞争的过程中,最终不是被现在的竞争对手打败,而是被很多不是你的竞争对手所打败。很简单的一个例子,大家都认为亚马逊是做电商的,但这是错的,它现在最主要的收入来自于云(云服务)。也就是说企业需要找到自己的核心数据(价值),这个是最关键的。只有在这个基础上,建立自己的大数据才有可能,才能做一些延伸。其次,要找到内部的一些外围相关数据,去慢慢地成长它。有点像滚雪球,第一层是核心,第二层是外围相关的数据。第三层是什么?就是外部机构的一些结构化数据。第四层是社会化的,以及各种现在所谓的非结构化的数据。这几层要一层一层地找到它,而且要找到与自己相关的有价值的东西。这样你的大数据才能建立起来。
第一步,找到核心数据。核心数据现在对很多企业来说实际上就是CRM,自己的用户系统,这是最重要的。
第二步,外围数据。比如企业经常会在线上线下举办一些活动,在做活动的时候,消费者的信息只是简单地提供在表单里面,还是进入了CRM的系统里?
第三步,常规渠道的数据。举例来说一个销售快销品的企业,能不能够得到沃尔玛的数据,家乐福的数据?很多国外大数据的案例,说消费者买啤酒的时候也会购买剃须刀之类,或者一个母婴产品的消费者她今天在买这个产品,预示着她后面必然会买另一个产品。这就有一个前期的挖掘。这些价值怎么来的,这就需要企业去找常规渠道里面的数据,跟自己的CRM结合起来,才能为自己下一步做市场营销、做推广、产品创新等建立基础。
第四步,外部的社会化的或者非结构化的数据,即现在所谓的社会化媒体数据。这方面信息的主要特征是非结构化,而且非常庞大。这对企业来说最大的价值是什么?当你的用户在社会化媒体上发言的时候,你有没有跟他建立联系?这里有个概念叫做DC(digital connection)。所谓的互联网实际就是一种DC,但是通常互联网上的那种DC是在娱乐层面。用到商业里面的话,就是企业必须得跟消费者建立这种DC关系,它的价值才能发挥出来。否则,你的数据以及很多的CRM数据都是死的。就像国外CRM之父Paul Greenberg写的四本CRM相关书籍,前面三本都是在讲数据库、系统之类的。第四本书的时候,就没有再讲那些东西,讲什么?讲互动,讲DC,讲怎么跟消费者建立关系。
有了这个数据库去进行数据挖掘,或者在建立数据的过程中,企业需要从什么方向去探索,也不是漫无目的的。首先应该跟着你的业务,业务现在有哪些问题,或者说这个行业里面主要的竞争点在哪里,这是很关键的。有了这个业务关系以后,再形成假设,也就是说未来的竞争点可能在哪里,大到未来的战略竞争,小到哪些方面。然后下一步要怎么做,这些形成一个假设,其次做一些小样本的测试。很多企业一看大数据就很恐怖,说我也买不起那些大数据,也雇不起那么专业的团队,怎么办?自己做一些小样本的测试,甚至通过电子表格Excel都可以做数据挖掘。不一定非要那么庞大、那么贵的数据。然后再做大样本的验证,验证出来的结果就可以应用到现实中去。
在大数据尤其是互联网时代还有一个最重要的点,就是失效预警。即你发现一个规律,在现实中应用了,但是你一定要设立一些预警指标。就是当指标达到什么程度的时候,之前发现的规律失效,那你就必须发现新的、相关的,否则也会造成一种浪费。笔者看到一篇文章,其中有一个重要结论。大家都在说大数据的价值很有用的时候,很多企业说我积累了多少TB,多少PB,但是你基于老的数据得出的很多结论实际是在浪费你的资源。你挖掘出来很多数据、很多规律,如果错了,明天按这个去做,就是浪费。因此需要有一个失效预警。在这样的过程中,最终你需要对应建立起内部团队,他们对数据的敏感度也才能培养起来。这时候你再去买大数据服务的时候才是有价值的。
所有这些工作作为企业来说是需要内部去做的,最终才能开花结果,有一些收获。企业大数据起步,要从小数据开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07