京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业数据分析该从何处下手
大数据的到来提升了数据的高度,企业第一次有条件在深层次获得并使用全面的数据。数据的大规模应用正改变着企业的运营管理方式,加之市场的快速变化,企业也越来越认识到数据分析应用的重要性。
但是,数据平台的搭建、数据分析应用的全面推行是一项艰巨的任务。如何搭建、如何选型、如何运维、如何说服领导层融入管理,以下以某国企单位的案例做简单介绍。
信息化建设情况
该企业的信息化从1999年开始起步,逐渐变成结算、融资系统 、银行系统。从06年开始实现了HR系统,新机房开始建成 ,近几年有又做了数据中心、虚拟化以及集成整合, 14年携手帆软正式合作,逐步向移动端发展。
以上是企业信息化发展的蓝图,行业统一平台是对决策管理系统的继承、完善和发展,是实线行业数据交换、信息共享的基础平台,也是承载各类行业性应用、实线两级建设主体有效集成协同共享的行业信息化基础平台。行业统一平台由云环境、传输环境、集成环境和数据环境四个部分组成。企业拥有五大保障体系,由信息化决策、架构与标准、建设与实施、运维与服务、网络安全这五个部分组成,为行业信息化建设、管理和应用提供全方位的保障。
数据分析项目实施背景
在实施之前,该企业在数据方面已经拥有一套完整的规划,包括最底层的数据远程、数据交换层、数据加工层、数据业务层。但是在实际运用的时候,发现存在非常大的缺点。
1、数据中心、数据集市由于自身因素,往往依托第三方运维管理或者由上级单位管理,当业务模式变动对数据中心产生调整需求时,往往应较慢、费用高、不好驾驭。
2、业务部门更改报表频率极高,而通过更改数据中心、数据仓库(增减数据)操作复杂度较高,流程繁琐。
3、数据中心、仓库、集市,处理数据需要较长时间,决策层需要实时数据监控,同时结合历史数据分析、关键核心业务部门需求需要信息部门快速满足。
在此之前,该企业也思考了很多办法,即使解决了以上问题,决策层仍受限,也缺少移动端的支持。
后来针对以上问题,我们从3个层面进行了分析。
1、决策层:
综合性底:缺少一套全面综合地反映企业经营动态、各业务领域及单位的运行状况综合系统。
实时性差:通过传统数据汇总传递方式存在严重的滞后性,决策层无法及时监控企业运行数据。
可用性不强:传统纸质报表数据量大、数据分散,给决策层准确把握企业、市场运行状态带来了困难。
2、业务层:
共享程度不高:跨部门的数据传递,分享困难,无法及时方便的互通专卖、营销、市场信息数据。
数据加工工作量大:业务部门日常需要处理大量、繁琐的数据汇总加工,耗费大量人员精力。并且难以多角度、深层次分析业务问题原因
3、信息层:
数据分散:各业务系统数据多、分布散,之间都存在着“数据孤岛”,分散的数据无法对指挥调度提供信息支撑。
管控难度大:个系统集成商开发之间各自为战,系统数据口径不一致、对数据统一管控带来不便。
业务需求增多:随着业务部门考核、调度、分析不断变动,信息部门通过传统的业务报表制作难以适应业务变化的节奏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22