
大数据时代学校管理的创新模式分析
伴随着互联网的发展,大数据的浪潮对于各个领域都产生了深远的影响,在中小学校的管理中,各类信息化管理系统已经取代传统的人工管理模式,随着信息化进程的进一步发展,如何管理海量的数据成为了中小学管理人员面临的挑战。鉴于目前的发展趋势,管理人员有必要转变传统的思维与决策模式,从大数据角度切入,实现学校管理工作的创新。
一、大数据时代的到来
关于“大数据”这一概念,最早由麦肯锡公司在2011年提出,目前,数据已经渗透到了各个领域与行业中。大数据,顾名思义,就是传统数据管理模式无法存储和处理的数据集,大数据不仅是人们获取新知的源泉,也是改变组织机构与市场结构的新技术。大数据有着三个突出的特征:
数据体量大; 数据产生速度快; 数据类别繁多。
笔者所在单位位于山西省沁水县,经过多年的发展,辖区内中小学管理改革工作不断推进,取得了突出的成效,在以往的中小学管理中,数据多采用随机样本处理法,在大数据时代到来后,海量数据不断产生,数据源泉更广阔,变化复杂,导致学校内部管理环境出现了本质的变化,给学校的决策活动带来了不小的困惑。如何适应大数据时代的要求,创新管理模式是现阶段亟待解决的问题。
二、大数据时代学校管理创新模式的应用
(一)强化数据观念
对于中小学校而言,发展是其永恒的主旋律,要实现发展的目的,需要做到科学管理,大数据正是实现创新管理的有益渠道。数据是学生发展的基础,可以为各项精准决策提供依据,数据真实的记录了学校的历史变迁。学校办学理念的完善、办学模式的创新、教育评估机制的制定,都离不开数据的整合与积累。数据资源是中小学实现管理精细化、决策精准化的主要依托,对于学校管理人员而言,需要强化自身的数据观念,做好数据资源的挖掘与利用工作,提高办学质量。
(二)创新管理办法
在大数据时代,各项工作都发生了深刻的变化,大数据让人们掌握了解决问题的新方法:通过数据找到问题的根源,针对性的制定解决策略。在传统管理模式下,中小学难以实现精准化管理,在数据系统方面,也存在种种缺失,缺乏系统性与完整性,教育决策主要由管理层主观决定。迎来大数据时代后,各类新技术推陈出新,学校管理必须从传统管理朝着数据管理的模式转变。在大数据时代之中,每一个师生都会在数据时空中留下特有的印记,这些印记反应出了他们的性格特点、兴趣爱好,学校管理者只要对数据进行精准分析,便可以了解师生的教学、学习需求,从而制定精细化的管理策略。
(三)建立管理模型
纵观西方国家的教育模式,都是通过长时间的发展中逐步摸索、完善而来,经历了诸多的变化,形成了自己的有的管理模式,在大数据时代,我国各个地区也开始研究适宜的学校管理模式。笔者认为,沁水县中小学校有着特殊的历史背景,为了适应大数据时代的管理模式要求,需要积极学习发达国家与地区的先进管理理念,对教育资源进行精准的配置。在大数据时代,主要的教育资源包括三种类型,即教育人才资源、人力资源与人才教育培训资源,在大数据时代,又诞生了信息教育资源、技术资源与管理资源,利用教育大数据、云应用管理与信息技术,可以实现对各类教育资源的合理配置。为此,需要以数据为依托,提高教育管理能力,根据广大师生的要求建立新型管理模式,进一步改善教学管理机制。
(四)拓展管理内容
数据化时代无疑极大推动了学校管理数据化的发展,在长时间的发展过程中,学习积累了大量的科研、管理、教学数据,为数据分析提供了完善的信息支持。学校管理人员需要注重数据的采集、分析,拓展传统的管理内容,加强数据分析,对信息进行有效的把控。如,对于学生的评估,教师只需要利用数据分析即可,不需要囿于自己主观的思维。
在这一过程中,还要关注数据的安全性,大数据将学校的科研、行政、教学、财务信息集合起来,为了充分维护学校教职工、学生的隐私,需要保证数据存储的安全性,这也是大数据时代学校管理工作中需要重点关注的问题。
三、结语
大数据的出现是社会进步、技术发展的必然结果。大数据对于学校的发展既是机遇,也是挑战。直面还是逃避?答案是毫无疑问的。对于中小学管理人员而言,需要树立起全新的管理意识,创新管理思维,直面大数据时代的挑战,提高数据分析和处理能力,同时充分发挥数据分析专家的作用,建设高效的数据治理机制,提升学校的综合效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23