数据挖掘 特异群组挖掘的框架与应用 特异群组挖掘在证券金融、医疗保险、智能交通、社会网络和生命科学研究等领域具有重要应用价值。特异群组挖掘与聚类、异常挖掘都属于根据数据对象的相似性来划分数据 ...
2015-10-13大数据:它是什么?它能帮助我们什么? 大数据能够改变我们看待世界的方式,在华盛顿这周有许多专家共聚一堂探讨一些有关大数据的问题。下边是一些他们提及的一些参考例子。 联合国建立了 ...
2015-10-13大数据价值究竟几何 用户购买了哪些食物,对哪些Facebook帖子点赞,如何使用车载GPS(全球定位系统),许多企业的业务依赖于这类数据的收集和销售。 问题在于,没有人知道这些信息的真正价值。数 ...
2015-10-13零售管理 大数据时代零售业统计的变革 结合零售行业,在阐述大数据给传统零售业带来的思维、商业、管理这一系列变革的同时,着重从传统零售业数据统计步骤的数据采集、整理、分析、诠释这几个方面分析大 ...
2015-10-13大数据的七种商业模式 移动互联网时代,大数据爆发后带来大量流量,运营商将经营重心从话务量转向流量。然而一方面面临着数据流的附加值被互联网公司赚走,沦为管道化的尴尬;另一方面运营商无差异的“ ...
2015-10-12大数据改变实体营销的5个关键点 从产品和服务首次推出,营销人员以某种形式使用数据来更好的了解其客户,并为他们提供更有针对性的产品和服务。现在,随着从多个渠道不断涌入的巨大数据量,营销人员正面 ...
2015-10-12为什么大数据与客户分析有所不同 大数据,这个术语已被过度使用,同样也被过度误解。现在我们陷入了这样一个怪圈:每个人都在谈论这件事,每个人都认为别人在做这件事,所以每个人都说他们正在做这件事 ...
2015-10-12为何企业数据分析总是不尽人意 许多企业在大数据、分析和雇佣金融工程师方面花费巨资,结果却显得很挫败。无可否认,他们拥有更多更好的数据,分析师和分析也都是一流的。然而,似乎除了更好的数据和分析之 ...
2015-10-12大数据VS小数据:9种数据类型及利用方法 如今,具有压倒性的数据量使得市场营销人员和广告商们已经难以理解哪些信息非常重要,哪些信息是纯粹的噪音,哪些数据是正确的?而哪些数据又是可以信赖的?不同类 ...
2015-10-12数据收集或比数据挖掘更有意义 按照今天信息技术的发达程度,数据收集看起来很容易。一个摄像头每天收集多少信息?空间跑着那么多卫星,它们每天收集多少信息?好像不用愁没有信息。而数据挖掘要从繁杂的信 ...
2015-10-12大数据精髓:不在于“大”而在于“精准” 大数据带来的变革是全方面的,不仅变革互联网世界,也变革现实世界,作为具有强大变革能力的大数据,站在创新前沿思考其精髓是非常重要的,大数据的精髓并不在于“ ...
2015-10-12如何识别虚假数据 决策本身就够困难的了,更不要说是根据一些糟糕的数据做出决策了。 好的决策应该是“数据驱动”的,但是如果数据有效性不好,就不可能据此做出好的决定。我的整个职业生涯几乎 ...
2015-10-12大数据不能做什么 情感也可以用数据来衡量?大数据专家的回答是肯定的。 近期诞生的“南方新浪财经大数据策略指数”就试图通过股吧、微博等私人交流平台,获取人们对于市场的“情感判断”。 ...
2015-10-12不同阶层数据分析师都在做什么呢 1、数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只 ...
2015-10-11大数据分析 应用的九大领域 随着大数据的应用越来越广泛,应用的行业也越来越低,我们每天都可以看到大数据的一些新奇的应用,从而帮助人们从中获取到真正有用的价值。很多组织或者个人都会受到大数据的 ...
2015-10-11大数据分析的业务价值和分析方法 企业的大数据分析投入重点以及大数据分析对IT资源的需求进行了分析。在这一系列里,就大数据的分析方式和技术进行阐述。 大数据分析的业务价值和数据类型 ...
2015-10-11大数据分析架构需权衡四要素 通过提供对更广泛信息集的访问,大数据就可以为数据分析师和业务用户产生分析见解提供一臂之力。成功的大数据分析应用程序会揭示某些趋势和模式,以此来为决策制定提供更好的 ...
2015-10-11大数据关键技术解析 大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。 大数 ...
2015-10-11遵循数据落地模型 “大数据操作系统”亮剑 大数据发展行动纲要中提出了:企业“+大数据”,无论互联网企业还是实体企业都在思考和探索如何“+大数据”。 大数据挑战 依然存在! ...
2015-10-11大数据里的真命题和伪命题 大数据必会深刻的改变这个世界,这点是毋庸置疑的,但从很多当下的讨论来看,大家似乎在大数据的使用边界上走入了误区,这篇文章想具体探讨下大数据能干什么以及不能干什么 ...
2015-10-11KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12