
大数据改变实体营销的5个关键点
从产品和服务首次推出,营销人员以某种形式使用数据来更好的了解其客户,并为他们提供更有针对性的产品和服务。现在,随着从多个渠道不断涌入的巨大数据量,营销人员正面对着巨大的“大数据”资源,他们需要想办法从中获得可操作的营销策略。下面就来看看大数据如何从5个方面永久性地改变营销。
1. 提高个性化:在大型百货公司的辉煌时代,当时的目标是为每一位客户提供贴心的服务,来提高竞争力。为客户提供更加个性化的服务能够提高销量、获得客户的忠诚度以及增加口碑广告。现在,大型企业和小型企业的营销人员都可以利用大数据来更有效地了解客户的需求,比以前更具有针对性、更个性化和相关性。其中一个很好的例子就是亚马逊,该公司利用从愿望清单、浏览历史记录和购买历史记录收集的数据,通过分析技术来为客户提供更个性化的产品建议。大数据为营销人员提供了很好的计划,让他们能够创建更富个性化的策略。
2. 数据驱动的营销:大数据已经不再被认为是行业炒作术语,现在大数据已经迎来了数据驱动营销的时代。随着原始数据继续堆积,大数据平台(例如Hadoop)已经出现,来帮助营销人员更好地利用这些数据。现在,企业可以实时存储、管理和分析大量数据,让营销人员更好地了解客户,而不是通过人口数据或者样本数据,而是对个人进行分析。有了这些信息,营销人员能够了解客户真正需要的是什么,以及如何最好地满足这些需求来提升客户体验。
3. 预测分析:有没有坐过旅行车背后面向后方的座位?希望现在没有这样的座位了。这些座位能够让乘客知道他们去过哪里,但对于他们要去哪里却没有提供任何线索。对于数据,营销人员一直坐在朝向后方的座椅。他们唯一的视图是之前的web访问记录、点击情况、打开率、下载等。只有过去的数据可以用来预测未来的客户行为,在不久前,并没有足够的营销数据来准确地预测未来客户行为。现在,通过外部系统(例如web和社交媒体)以及内部系统(例如CRM和购买历史记录)的数据,营销人员足以分析客户当前和未来的购买行为,这些可操作的情报可以推动现有产品和服务的销售,并带来更新和更好的产品和服务。
4. 虚拟活动能力:大数据情报,加上人类创造力,可以引发大胆的想法和宣传策略。同时,因为大数据模拟,这些大胆的想法可以在虚拟市场中进行测试,从而消除了市场内测试相关的风险和成本费用。通过使用真实世界的数据,即使是最古怪的营销思路也可以进行测试、挑战和重新测试,直到这些营销想法成为实际的活动—其有效性随后可以使用营销后分析来衡量。
5. 不只是针对大型企业:现在的技术,大数据并不只是针对大型企业。即使是小型企业也可以从存储、管理、分析和可视化数据中获得很大的优势,并且只需要非常有限的成本。此外,现在的软件让企业可以部署大数据分析,来完成影响目标,而不需要雇佣若干优秀的数据科学家。小型企业能够使用与大型企业相同的工具和技术来提高其营销策略,实现与大型企业公平竞争的机会。显然,大数据已经永久性地改变了营销游戏规则。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07