分析解读数据的真正目的是什么 在营销学中,市场的根本在于需求,需求由人而生。因此,我们不应该就数字而数字,就算法而算法,应该自始自终关注“人”,市场研究则更是如此。 有人也许会说,“人 ...
2015-10-15如何看数据分析 关于数据,有两种常见的情况。从腾讯出来的一个朋友曾告诉我“腾讯的数据太多,都不知道怎么看”,而另一个在创业公司工作的朋友告诉我“老板为了省开发资源,数据给的少得可怜”。这两 ...
2015-10-15大数据“掘金”最靠谱的五个领域 当代著名丹麦物理学家尼尔斯·玻尔(Niels Bohr)曾说:“预测是非常困难的,尤其是对未来的预测。”在科学技术瞬息万变的时代,亦是如此,今日的一个大胆预测,说不定就是 ...
2015-10-15大数据风控到底能不能拯救网络借贷 自2007年被引入中国,P2P行业在国内已经走过了八个年头。2013年,P2P行业正式进入爆发式发展阶段。与此同时,行业开始出现大面积的风险事件。据网贷之家数据显示,截 ...
2015-10-15大数据营销和互联网精准广告将爆发 2014年中国网络广告市场规模达到1540亿元,同比增长达到40.0%,预期到2018年达到3930亿元。而以技术驱动的大数据精准营销更是互联网广告的未来趋势,在国外,纳斯达克 ...
2015-10-15SAS学习笔记(2):SAS语言构成 SAS语言程序由数据步和过程步组成。数据步用来生成数据集、计算、整理数据,过程步用来对数据进行分析、报告。SAS语言的基本单位是语句,每个SAS语句一般由一个关键字 ...
2015-10-14SAS学习笔记(1):SAS基本概念 1. SAS数据集 SAS数据集(SAS Datasets)可以看作由若干行和若干列组成的表格,类似于一个矩阵,但各列可以取不同的类型值,比如整数值、浮点值、时间值、字符串、货 ...
2015-10-14
调研问卷中多选题的分析方法探讨 使用调研问卷的定量研究中,为了更全面地了解研究内容、更广泛地收集信息,经常会用到多选题,但由于多选题多指向性的特点,除了频数表和交叉表(只能与单选题做交叉) ...
2015-10-14
怎样合理地定义用户流失 流失用户与回访用户 流失用户的定义请参考“网站的活跃用户与流失用户”这篇文章,要解释怎么样合理地去定义用户流失时间段长度的问题,需要先介绍一个新的指标概念: ...
2015-10-14
数据分析带来移动应用产品精细化运营 根据移动应用数据分析公司 App Annie此前发布的调查报告显示,今年一季度全球移动应用市场仍然呈持续发展态势,苹果AppStore与Google Play两大应用商城在下载量 ...
2015-10-14三个大数据迷思与八个大数据实战密技 1.忘掉大数据吧!如果大数据已经成为大家用数据的常态了,你何必特别讲他出来呢?98年的时候互联网是一个流行语,现在还有人会说他是流行语吗?现在有很多电子商务 ...
2015-10-14大数据时代:要么去改变,要么被改变 告诉消费者“我懂你”,但“太懂你”会引起不适 过去15年中,我们不停地问这些问题:客户是谁,他们需要什么产品,需要什么样的价格?但是现在事情相反了,我 ...
2015-10-14中国的大数据该如何腾飞 大数据,首先意味着海量数据,并且彻底改变了数据利用的理念。分析所可能产生的全部数据成为可能,这必然使得人们改变过去沿用多时的抽样分析方法,而要善于快速乃至实时对海量 ...
2015-10-14抢占“大数据时代”先机 未来的医疗可能是这样的:“可穿戴设备”将收集到的人体生理数据传入云端进行分析处理,医生给出诊断或康复建议,甚至为个人定制健康全记录; 未来的教育可能是这样的 ...
2015-10-14
excel表格制作方法介绍 在日常工作中,我们经常要做各种各样的表格,有时用 Word 做表格,可大多时候,用 Word 做表格调整太麻烦,不如用电子表格Excel 快,容易调整。本教程为Excel 2003入门教程,详 ...
2015-10-13
Excel 2016內建Power BI工具 在新版Excel當中,最令人印象深刻的是,終於內建Power BI分析工具,並且提供更多強化功能。微軟在Excel 2010版開始提供Power BI增益集,到了2016版,能夠同時處理多個檔案 ...
2015-10-13回归分析的认识及简单运用 回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,分为回归和多重回归分析 ...
2015-10-13如何区分数据科学家、数据工程师与数据分析师 与其他一些相关工程职位一样,数据科学家的影响力与互联网同进同退。数据工程师和数据分析师与数据科学家携手共同完成这幅“大数据时代”巨作。他们共同 ...
2015-10-13
基于R语言和SPSS的决策树算法介绍及应用 机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见 ...
2015-10-13深度分析,大数据的八大趋势与创新 伴随着大数据技术与数据分析的发展趋势,拥有丰富数据的分析驱动型企业应运而生。下面我们来具体看下大数据技术与数据分析有哪些趋势和创新。文中,也用了一些IBM在 ...
2015-10-13在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27