数据挖掘的聚类算法有哪些,各有什么优势 比较分类算法的话,大概考虑这几个维度:时间空间复杂度,鲁棒性,参数敏感性,处理不规则形状,适合的类数量,类间差异(范围大小,样本个数,形状差异) ...
2015-10-26数据分析,不能碰的几个禁区 一、没有明确分析数据的目的 要进行数据分析,首先要明确自己的目的,为什么要收集和分析这样一份数据。只有明确了目的之后,才能够把握好接下来应该收集哪些 ...
2015-10-26数据分析之如何用数据 知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。 第一个部分,是看历史数据 ...
2015-10-26大数据时代对营销人员有何启发 大数据时代已经来临,未来对于企业来说,数据可能是最重要、最珍贵的东西,而大数据对于营销人员亦是如 此。数据整理和收集、数据分析和处理,以及从数据中找到那些潜在的营 ...
2015-10-26有关大数据的误区:数据统计≠大数据 关于大数据的误区:数据统计是已经发生的事情,而大数据往往被用于还没有发生的事情预测或者推荐中,二者不能划等号。不过,无论数据统计也好,大数据也罢,都是为了使 ...
2015-10-26大数据时代会保网互联网+助企业高效管理人力资源 21世纪企业发展最关键的因素是什么?有人说是人才,有人说是技术。准确来说,是人才和技术的完美结合。而在这样的时代契机中,会保网创新出击,用一流的专 ...
2015-10-26大数据时代财务工作渐入自由境界 “互联网+”时代,财务人员的工作方式已然发生了很大变化。 从最早的商业记录到最早的商用计算机,财会行业一直都是能够迅速掌握并利用新兴技术的那批人。他 ...
2015-10-26你需要知道的10个机器学习专家 机器学习是一个令人难以置信的广阔和丰富多彩的领域,涉及到了大量的应用。因此,标题写为“需要知道的10个机器学习专家”而且要去证明它这是具有非常大的挑战性。 ...
2015-10-26数据分析思想 现如今,大数据,数据科学家,商业智能,建模人员和无数其他形形色色的职业不断地向正在浏览媒体的人呐喊着。挑战时的振奋人心,诱人的前途和职业道路,与决策者亲密接触的可能性,“天才 ...
2015-10-26教你如何看数据分析 现在说分析数据,好像已经成了互联网那个从业者的口头禅,做产品的,运营的,市场的口口声声都在说数据怎么样,但是了解数据的真正含义,读懂数据的人确实不多。之前跟一个之前在国 ...
2015-10-25市场调研和数据分析的方式和方法 一、产品经理为什么要做市场调研?调研的目的是什么? 我们在做市场调研前,必须有一个自己的调研思路:我们要调研的对象,需要收集的数据,需要达到的效果 ...
2015-10-25数据分析的步骤有哪些 数据分析有极广泛的应用范围,这是一个扫盲贴。典型的数据分析可能包含以下三个步: 1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的 ...
2015-10-25每个电子商务企业都应该分析的9种数据 要想在如今的电商大战中存活下来,每个创业者都需要做好每一件事情,从最基本的搜索引擎优化(SEO)到移动广告。而一些分析工具能够帮助你更好的了解企业的运营情况 ...
2015-10-25数据分析三个技巧:看趋势、看分布、看对比 数据分析体系可分为数据整理、数据分析、数据呈现。数据整理包含对源数据的获取、筛选、清洗、整理和统计,数据整理是对源数据的初加工,是数据分析工作的前置 ...
2015-10-25电子商务数据分析的五大思维 有人说,在电子商务的王国,谁拥有数据,谁就先人一步。很多淘宝的卖家认为,销售数据不过是用来看看店铺赚的钱数罢了。其实,只要你搞懂数据分析的方式,那么就能在销售数 ...
2015-10-25如果你也想当数据分析师 时下最热的莫过于大数据,这三个从诞生起,就有太多的光环套在脑袋上。随之而来的就是数据挖掘师,数据分析师,数据科学家…… 如果你也想当数据分析师,那么你也许该看看 ...
2015-10-25写给数据分析师的几点建议 几点想法,分享给刚入门的数据分析师,也跟经验丰富的数据分析师做下探讨。 1.数据是有立场的,立场决定解读 数据对于业务来讲,是KPI的衡量标杆,也是行动指南。 ...
2015-10-25关于大数据的九点思考:没有你想的那么神奇 大数据思考之一 任何一个网站的数据都是人们互联网行为数据的很小的一个子集,无论这个子集多么全面,分析多么深入,都是子集,不是全集。对于企 ...
2015-10-25大数据临产业风口 如何解读数据资产商业价值 如今,大数据已不再停留于概念畅想阶段,对于大数据的认知与应用也越来越广泛深入,不管是政府还是企业都在加快行业建设与布局,资本市场的助推更是加速了这 ...
2015-10-25如何用商业思维分析用户行为数据 数据这么多,各类数据的表达不一样,具体应该如何处理?有人说:“产品初期,活动为辅,处理数据在于稳定。”有人说:“产品中期,活动为主,处理数据在于调控。”有人说 ...
2015-10-24在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10