
如何用商业思维分析用户行为数据
数据这么多,各类数据的表达不一样,具体应该如何处理?有人说:“产品初期,活动为辅,处理数据在于稳定。”有人说:“产品中期,活动为主,处理数据在于调控。”有人说:“产品末期,活动为核,处理数据在于激励。”还有人说:“处理产品数据要先四步走!”
第1步:看整体数据,主要看整体数据有何异常,以及哪些数据的趋势较好(例如,整体数据,游戏人数稳定,月收入对比极端)
第2步:看细分数据(例如,细分数据,游戏新增用户和流失活跃付费用户成正比,新增用户不付费,大R流失严重)
第3步:结合数据分析(例如,分析数据,付费玩家为什么流失?没有付费竞争?还是付费后达到游戏金字塔顶端失去乐趣?)
第4步:根据数据行动(例如,更新版本,开展玩家召回活动,换量….)
估计这样的知识各位同学早已经倒背如流。在这篇文章中,作者将和运营童鞋们一起深入发掘数据价值以及互联网中的商业思维。笔者认为:数据≠数学!如果你用函数思维看游戏,那只能说你数学不错;在互联网行业,必须将用户行为数据与商业思维相结合,才能创造互联网价值。
1. 培养数据的商业敏感性最近看了某工作室高层频繁辞职,项目组陆续被裁,各大猎头忙着抢人的新闻,最近又和HR交谈,得知现在某网的简历已经涨到15块钱一份;初步看来,没什么关联,细细品味,关联又很大,如果将思维转换,则又是另一种景象……
以智联为例,网站主要看注册量,及硬广/守株待兔的套路,HR买简历去智联,不一定能拿到中意的简历;而猎头可谓是闻风而动,往往主动行动,掌握了大部分的高质量简历,不仅省了钱,也拿到了好的资源;把握市场动向,培养商业敏感性,将此原则代入到游戏中不难发现,若一款MMO游戏的用户大量流失(因为托?关服?其他…)而作为另一款MMO产品运营的你能提前敏感的嗅到这缕商业气息吗?如果不能,则用户重返渠道(其他游戏),那你无疑只能继续守株待兔,恳求渠道施舍流量,这无疑是失败的。
当然,我们无法从别人后台调取数据,那么一般从哪里看其他游戏的数据走向呢?看竞品论坛,游戏更新力度,看论坛用户活跃度,都能看出一丝端倪,然后深入接触用户,一切自然水落石出,至于如何拉拢用户,自然是因人而异。
2. 培养数据的衍生敏感性
如果市场上的牙刷销量增加了,你能感觉到牙膏的销量也会增加吗?如果放在互联网市场,不难看出一个很悲观的事实,牙刷销量增加,一夜之间,白玉牙刷,象牙牙刷,卡通牙刷,玛瑙牙刷等等产品一夜崛起,最后通货膨胀,大家都没得做。
对于这种情况,是开发者的心态问题,所以笔者无法说什么;本段主要说的是数据的衍生敏感性,例如一件稀有装备从100元涨到200元,那么产出稀有装备的副本/特殊地图的进场道具也会从10元涨到20元;道具上涨,玩家的充值力度就得加大;玩家充值力度加大,ARPU值随之提升,如何最大化的提升arpu值;从产品层面来说,加大充值活动力度,调整装备产出概率,抓住用户需求,投其所好,实现利益最大化;而不是装备增值,便增加多种装备,这样只会适得其反。
3. 换位思考看数据
有些CP选渠道,会很重视流量这个东西,无论产品怎样,只要渠道流量好,便一个劲地上渠道,铺推广,搞营销….
流量这东西,讲究的是适不适合,渠道流量再多,那也不是你的,即使是你的,那也不是你一个人的,换个角度思考;从渠道的角度看产品,渠道看产品,看转化,看付费,看留存;知根知底,数据这东西是双向的,只不过彼此看的角度不同,你若真想要量,至少得用产品数据交换渠道数据。
换个角度来说,若产品的各类数据较高;最好摸清楚用户是从那个渠道来的,主要贡献的用户群体是谁?这样一来,产品设计可以更倾向用户喜好,这样投其所好的行为是提升转换率的一种好方法。(以MMO混服为例,区分用户可给包打上渠道标识,简单易懂)
4. 用商业思维看行为数据
行为数据,即用户行为占有率,例如活跃度,留存率,付费率…
商业思维,即利益分析,例如用户周期价值,用户可挖掘价值的探索性…
例如,两个公会冲突,游戏内打得火热,公会成员拼活跃,比等级;公会会长拼装备,比充值,两方打得火热,不死不休,无论是在线还是充值都达到了一个可观的水平;作为运营,你怎么办?如果你什么也不做,在那里偷偷乐呵,并且沾沾自喜;笔者读过一本书,书里说过一句话:“坐着就是为了等死!”如果你不信,次月两个公会和好,或者一个公会被赶出游戏,后悔也晚了。
“你想坐着等死吗?”如果不想,就得学会用商业思维看待行为数据;例如,这两个帮会的竞争平台有哪些?论坛?贴吧?哪些人在活跃,哪些人在付费?影响他们的人是谁?他们是否还有可继续发掘价值?
如何平衡这种关系?皮球效应很重要,压得越狠,弹得越高,什么都不管,只会越弹越低,归于平静;目前游戏较为常见的就是托这种催化剂;的确,托是起到了一定作用,但是治标不治本;如果用商业思维去思考,以天涯贴吧为例,话题已经存在,真实的用户已经存在,那么口碑营销是很容易实现的,通过原有用户的话题,吸引潜在用户,带来更多的商业利益;通过对用户习惯(例如:爱凑热闹)和人性弱点(例如:地位越高,越好面子)的把控,制造一场营销,此类营销效果显著,最重要的是不要钱!
很简单的一次用户行为,很常见的用户行为数据,换个角度分析,或许就是一场商业营销!
5. 通过数据看用户与产品关系
很多人对固定的数据很看重,arpu等核心数据形成了一套标榜,无数人逐条核对,衡量自己的产品好坏,无数运营以此核对,衡量运营的成功与否,如果你仅仅是为了KPI,那你是成功的,如果你还想做的更高,那这是远远不够的。
用户与产品关系,多数同学还定义在用户定位、产品定位上;再深入进去,就是一套的核心数据考核,运营流程….
笔者认为,数据、用户、产品;三者形成一种三角关系,可以探索的方面太多太多,例如:一个用户在线5分钟,一个用户在线10分钟,他们有什么不同?如果将10分钟定义为活跃用户,5分钟用户和10分钟用户的在线目标在哪?什么等级段的用户在什么时间段留存多少时间?这些很杂,也很容易被忽略。
再举个例子,同一时间内,若某用户一次性购买两个宝石,他是算一次性购买?还是重复购买?不要小看此类数据,用户单次购买和分次购买直接决定用户的需求量,同样的数量面前,区间价值很大!
最后换个行业思考,编剧行业对剧本有一个定义,剧本只有5分钟!这个5分钟说的不是电影周期,而是你只有5分钟去打动你的用户,若五分钟不行,用户便会失去耐性;游戏也是一样,回到开头所说,一个用户在线5分钟,一个用户在线10分钟,他们的区别不仅仅在于时间的差别,更在于产品的时间粘性,以此为例,若开场动画很精美,进入游戏画面也很赞,用户用10分钟去沉迷于此,是很容易的情况,若开场的新手引导繁琐拖拉,则引导5分钟也无法支持。
终上所述,通过数据看用户与产品关系,通过数据发现问题,通过用户整理问题,通过产品解决问题,这不仅仅涉及到运营,更涉及到策划,美术等各个部门,毕竟产品不是上线就交给运营了,一个团队,团结合作才是重点!
数据很多,也很杂,他们彼此形成一张关系网,触一发而动全身;至于具体如何理解,不同的人有不同的领悟,只能说一句:“数据很重要!重要的不是他的算法多么准确,而是接地气!他告诉我们,接下来,该怎么做!”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07