
如何用商业思维分析用户行为数据
数据这么多,各类数据的表达不一样,具体应该如何处理?有人说:“产品初期,活动为辅,处理数据在于稳定。”有人说:“产品中期,活动为主,处理数据在于调控。”有人说:“产品末期,活动为核,处理数据在于激励。”还有人说:“处理产品数据要先四步走!”
第1步:看整体数据,主要看整体数据有何异常,以及哪些数据的趋势较好(例如,整体数据,游戏人数稳定,月收入对比极端)
第2步:看细分数据(例如,细分数据,游戏新增用户和流失活跃付费用户成正比,新增用户不付费,大R流失严重)
第3步:结合数据分析(例如,分析数据,付费玩家为什么流失?没有付费竞争?还是付费后达到游戏金字塔顶端失去乐趣?)
第4步:根据数据行动(例如,更新版本,开展玩家召回活动,换量….)
估计这样的知识各位同学早已经倒背如流。在这篇文章中,作者将和运营童鞋们一起深入发掘数据价值以及互联网中的商业思维。笔者认为:数据≠数学!如果你用函数思维看游戏,那只能说你数学不错;在互联网行业,必须将用户行为数据与商业思维相结合,才能创造互联网价值。
1. 培养数据的商业敏感性最近看了某工作室高层频繁辞职,项目组陆续被裁,各大猎头忙着抢人的新闻,最近又和HR交谈,得知现在某网的简历已经涨到15块钱一份;初步看来,没什么关联,细细品味,关联又很大,如果将思维转换,则又是另一种景象……
以智联为例,网站主要看注册量,及硬广/守株待兔的套路,HR买简历去智联,不一定能拿到中意的简历;而猎头可谓是闻风而动,往往主动行动,掌握了大部分的高质量简历,不仅省了钱,也拿到了好的资源;把握市场动向,培养商业敏感性,将此原则代入到游戏中不难发现,若一款MMO游戏的用户大量流失(因为托?关服?其他…)而作为另一款MMO产品运营的你能提前敏感的嗅到这缕商业气息吗?如果不能,则用户重返渠道(其他游戏),那你无疑只能继续守株待兔,恳求渠道施舍流量,这无疑是失败的。
当然,我们无法从别人后台调取数据,那么一般从哪里看其他游戏的数据走向呢?看竞品论坛,游戏更新力度,看论坛用户活跃度,都能看出一丝端倪,然后深入接触用户,一切自然水落石出,至于如何拉拢用户,自然是因人而异。
2. 培养数据的衍生敏感性
如果市场上的牙刷销量增加了,你能感觉到牙膏的销量也会增加吗?如果放在互联网市场,不难看出一个很悲观的事实,牙刷销量增加,一夜之间,白玉牙刷,象牙牙刷,卡通牙刷,玛瑙牙刷等等产品一夜崛起,最后通货膨胀,大家都没得做。
对于这种情况,是开发者的心态问题,所以笔者无法说什么;本段主要说的是数据的衍生敏感性,例如一件稀有装备从100元涨到200元,那么产出稀有装备的副本/特殊地图的进场道具也会从10元涨到20元;道具上涨,玩家的充值力度就得加大;玩家充值力度加大,ARPU值随之提升,如何最大化的提升arpu值;从产品层面来说,加大充值活动力度,调整装备产出概率,抓住用户需求,投其所好,实现利益最大化;而不是装备增值,便增加多种装备,这样只会适得其反。
3. 换位思考看数据
有些CP选渠道,会很重视流量这个东西,无论产品怎样,只要渠道流量好,便一个劲地上渠道,铺推广,搞营销….
流量这东西,讲究的是适不适合,渠道流量再多,那也不是你的,即使是你的,那也不是你一个人的,换个角度思考;从渠道的角度看产品,渠道看产品,看转化,看付费,看留存;知根知底,数据这东西是双向的,只不过彼此看的角度不同,你若真想要量,至少得用产品数据交换渠道数据。
换个角度来说,若产品的各类数据较高;最好摸清楚用户是从那个渠道来的,主要贡献的用户群体是谁?这样一来,产品设计可以更倾向用户喜好,这样投其所好的行为是提升转换率的一种好方法。(以MMO混服为例,区分用户可给包打上渠道标识,简单易懂)
4. 用商业思维看行为数据
行为数据,即用户行为占有率,例如活跃度,留存率,付费率…
商业思维,即利益分析,例如用户周期价值,用户可挖掘价值的探索性…
例如,两个公会冲突,游戏内打得火热,公会成员拼活跃,比等级;公会会长拼装备,比充值,两方打得火热,不死不休,无论是在线还是充值都达到了一个可观的水平;作为运营,你怎么办?如果你什么也不做,在那里偷偷乐呵,并且沾沾自喜;笔者读过一本书,书里说过一句话:“坐着就是为了等死!”如果你不信,次月两个公会和好,或者一个公会被赶出游戏,后悔也晚了。
“你想坐着等死吗?”如果不想,就得学会用商业思维看待行为数据;例如,这两个帮会的竞争平台有哪些?论坛?贴吧?哪些人在活跃,哪些人在付费?影响他们的人是谁?他们是否还有可继续发掘价值?
如何平衡这种关系?皮球效应很重要,压得越狠,弹得越高,什么都不管,只会越弹越低,归于平静;目前游戏较为常见的就是托这种催化剂;的确,托是起到了一定作用,但是治标不治本;如果用商业思维去思考,以天涯贴吧为例,话题已经存在,真实的用户已经存在,那么口碑营销是很容易实现的,通过原有用户的话题,吸引潜在用户,带来更多的商业利益;通过对用户习惯(例如:爱凑热闹)和人性弱点(例如:地位越高,越好面子)的把控,制造一场营销,此类营销效果显著,最重要的是不要钱!
很简单的一次用户行为,很常见的用户行为数据,换个角度分析,或许就是一场商业营销!
5. 通过数据看用户与产品关系
很多人对固定的数据很看重,arpu等核心数据形成了一套标榜,无数人逐条核对,衡量自己的产品好坏,无数运营以此核对,衡量运营的成功与否,如果你仅仅是为了KPI,那你是成功的,如果你还想做的更高,那这是远远不够的。
用户与产品关系,多数同学还定义在用户定位、产品定位上;再深入进去,就是一套的核心数据考核,运营流程….
笔者认为,数据、用户、产品;三者形成一种三角关系,可以探索的方面太多太多,例如:一个用户在线5分钟,一个用户在线10分钟,他们有什么不同?如果将10分钟定义为活跃用户,5分钟用户和10分钟用户的在线目标在哪?什么等级段的用户在什么时间段留存多少时间?这些很杂,也很容易被忽略。
再举个例子,同一时间内,若某用户一次性购买两个宝石,他是算一次性购买?还是重复购买?不要小看此类数据,用户单次购买和分次购买直接决定用户的需求量,同样的数量面前,区间价值很大!
最后换个行业思考,编剧行业对剧本有一个定义,剧本只有5分钟!这个5分钟说的不是电影周期,而是你只有5分钟去打动你的用户,若五分钟不行,用户便会失去耐性;游戏也是一样,回到开头所说,一个用户在线5分钟,一个用户在线10分钟,他们的区别不仅仅在于时间的差别,更在于产品的时间粘性,以此为例,若开场动画很精美,进入游戏画面也很赞,用户用10分钟去沉迷于此,是很容易的情况,若开场的新手引导繁琐拖拉,则引导5分钟也无法支持。
终上所述,通过数据看用户与产品关系,通过数据发现问题,通过用户整理问题,通过产品解决问题,这不仅仅涉及到运营,更涉及到策划,美术等各个部门,毕竟产品不是上线就交给运营了,一个团队,团结合作才是重点!
数据很多,也很杂,他们彼此形成一张关系网,触一发而动全身;至于具体如何理解,不同的人有不同的领悟,只能说一句:“数据很重要!重要的不是他的算法多么准确,而是接地气!他告诉我们,接下来,该怎么做!”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15