
数据分析之如何用数据
知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。
第一个部分,是看历史数据,发现规律。
以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果。在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,哪个品类销量最大,哪个品类销量最小,每月或者每周的平均增长率和复合增长率是多少。通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,不用促销就可有很大的量,哪些是弱势的品类等等,这样可以确定出来拿那个品类出来做促销。对于内容社区也是一样,我们要从内容分类,和内容类型两个维度上去看,找到数量少类型单一的分类,对于这些分类下的内容数量及质量都需要提高。
第二部分,是从历史数据和现有数据中,发现端倪,找出问题所在。
我们在工作中,每天都会接触到大量的数据,但是大部分看数据就流于表面了。例如对于社区来说,很关注总注册用户数,每日登录用户数,每日新用户注册数。这些数据不能说不可以看,但是更要看到最重要的数据点:每天有多少老用户登录、每天发布的内容中有多少能够称得上是优质的精品内容,这两个数据决定着说这个社区的质量怎么样,对于内容社区来说,初期如果不重视质量建设,那么等用户到50W、100W之后再去看质量,已经有点晚了。还有一个是市场部门用的会很多,在市场宣传过程中,我们会有很多广告和链接放出去,每天要监测这些链接数据量,当出现数据波动非常大的时候我们应该怎么去做,是要看到链接放置的媒体出现了问题,是不是对方做活动突然吸引了大量的人来,还要去看到我们的着陆页面,是不是吸引用户点击等等。数据就是我们的助手,帮助我们发现问题,同时顺藤摸瓜找到问题的根源所在。这个能力是非常重要的,不管是不是做数据相关工作的人,都要能够掌握。
第三部分,数据预测。
通过分析数据,发现其中的规律,那么则可实现数据驱动运营,驱动产品,驱动市场。例如,对电商来说,知道一年内每个月的各个品类的增长率,也清楚各月之间的影响情况,那么按照这个量就可预测未来月度里面交易量的增长情况,我们能够达到什么样的水平。同时,在某个大型活动完结之后,不是立即看数据,要看活动结束后一个月后的数据,这样才能看到多少用户是因为活动的奖品过来,活动结束之后就走了,为什么选一个月,因为在一个月内流失率什么的就一目了然了。
第四部分,学会拆解数据。
这个拆解数据在我看来有两方面的维度一个是每年的数据指标怎么去分拆到每个季度,或者每个月,这个有点绩效驱动的意思了。另外一个就是说每天产品的运营数据,推广数据或者销售数据有很多,要会对这些数据进行拆分,知道每个数据都是来自哪些方面,增高或者降低的趋势是什么。
近几年数据分析在互联网领域非常受到重视,无论是社区型产品,工具类产品,还是电子商务,都越来越把数据作为核心资产。确实数据分析的越深,越能够是在精细化的运营,在很多时候工作的重点才有据可依。
但是要注意两方面的问题:
1,不能唯数据论
数据有时候能够反馈一些问题,但是也要注意到在有些时候数据并不能说明所有问题,也需要综合各方面的情况整体来看。同时要有数据分析的思维,不仅仅是互联网行业几乎所有的行业每天都会产生大量的数据。所以最重要的是有这种数据粉丝的思维,知道怎么通过数据分析找出规律,发现问题,对将来做出预测及拆解。
2、找到适合自己产品的数据指标来
不同的产品特性,用户使用习惯也都不一样的,需要找到适合自己产品的指标参数而不是随大流,不是简单的PV、UV就可以了。例如对于内容型产品来说,每天的PV,UV是一个非常重要的指标。对于社区型网站来说,每天的登陆数据和进行有效操作的用户则是需要关注的。而对于电子商务网站来说,订单数及客单价是核心,但是于此同事转化率和重复购买率则是需要同样关注的。在移动互联网上这种的数据参数更是多样,最重要的是我们要学会通过自己用户行为特征来找出界定产品健康程度的标准,这样能让我们更好地观察自己产品的好坏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16