大数据营销的10大切入点 许多人感觉到大数据时代正在到来,但往往只是一种朦胧的感觉,对于其真正对营销带来的威力可以用一个时髦的词来形容——不明觉厉。实际上,还是应尽量弄明白,才会明白其厉害之 ...
2015-11-04大数据如何精确定位营销 大数据将是继云计算、物联网之后IT产业又一次颠覆性的技术变革。 电影《天下无贼》里有这样一句经典对白:“21世纪什么最贵?人才!”如今,选项可能还要加上一个:数据。 ...
2015-11-04大数据+大创意=?赚大钱 在大数据时代背景下,品牌商一方面要借助大数据的整合应用,另一方面要从目标受众的角度出发,不断推送让受众喜闻乐见的原创内容,才能真正做到品牌更加精准化、更加深层化 ...
2015-11-04大数据公司实践零售O2O:打通线上线下 大数据公司这样实践O2O:通过线上线下会员打通识别同一人、全触点数据采集、建立大数据管理平台支撑上层应用系统辅助零售商进行大会员管理与经营管理决策以及个性化 ...
2015-11-0415个IT技术人员必须思考的问题 行内的人自嘲是程序猿、屌丝和码农,行外的人也经常拿IT人调侃,那么究竟是IT人没有价值,还是没有仔细思考过自身的价值? 1.搞IT的是屌丝、码农、程序猿? ...
2015-11-03数据分析浅谈 从以下几个方面入手,什么是数据分析,怎么做数据分析,为什么要做数据分析,如何才能做得更好。 1.什么是数据分析 所谓数据分析就是将产品相关的数据收集整合,然后利用特定 ...
2015-11-03四个要素,轻松搞定企业大数据规划 成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产,企业着手实施大数据战略要着重考虑这四大方面,管理者需要在这四方面做好规划,才能 ...
2015-11-03数据挖掘与数据建模的九大定律(2) 第六,洞察律:数据挖掘增大对业务的认知。 数据挖掘是如何产生洞察力的?这个定律接近了数据挖掘的核心:为什么数据挖掘必须是一个业务过程而不是一个技术过程 ...
2015-11-03数据挖掘与数据建模的九大定律(1) 数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践 ...
2015-11-03关于数据分析,聪明人常犯的5个错误 就算了解数据分析,聪明人在进行数据分析时,也会犯错。下面5个错误就是聪明人也常犯的5个错误: 1. 走得太快,没空回头看路。 初创公司里的人们仿佛 ...
2015-11-03互联网时代,你应该了解的五种物联网大数据 大数据是我们这个时代最伟大的经济机遇之一。但它的概念非常模糊。在一些谈话中,不同的参与者用“大数据”所表示的意思可能有以下三种:1.大量的数据;2.超 ...
2015-11-03O2O的大数据金矿应以什么姿势挖掘 首先我们先来分清数据在商业社会中产生的两端,一端是TO B端,也就是商家端,这个部分在银行表现有企业的存贷等数据;零售业则是商品属性、进价、商家类型等数据。说白 ...
2015-11-03抓住大数据的历史机遇 大数据正在创造新理论、新技术、新价值,带来大机遇、大挑战、大发展,在国家治理、社会发展、经济科技创新中的引领作用日益凸显,成为推进时代变革发展的重要切入点和增长点。 ...
2015-11-03“大数据”做P2P 风控靠谱吗 P2P平台傍上“大数据”听着美美的,然而事实上绝大多数的P2P平台并没有大数据资源和分析能力,所谓的风控很可能是天方夜谭。而相对来说,线上、线下相结合的风控模式安全性更高 ...
2015-11-03SPSS学习笔记之—生存分析的Cox回归模型(比例风险模型) 一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡 ...
2015-11-02一张报表奋斗N晚?数据分析对它说“NO” 双十一即将来临,伴随着销售量的一路上升,各类数据也接踵而来。适当的统计分析可以提取有用信息、形成有效结论,这一过程的良好操作对于店铺的持久发展意义非 ...
2015-11-02大数据时代-如何才能把营销数据落到实处 在大多数公司,营销人员负责评估市场竞争。因此,将近60%的信息专员都会向营销部门报告分析数据,然而大多数营销人员并不能战略性地运用这些竞争分析,只是不断 ...
2015-11-02物联网加剧大数据网络问题 运营商如何应对 网络运营商和服务提供商正在加紧对物联网的准备——而物联网将收入机会与技术挑战混合在了一起。 消费者将要为物联网设备而疯狂,这些设备从穿戴 ...
2015-11-02物联网时代 工业大数据八大应用场景 工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链 ...
2015-11-02如何利用互联网大数据这桶万金油 互联网金融在中国的喷发式成长带动了个人信用征信的强大需求,新型征信市场体系的建立又带动了大数据产业的发展,在这条逻辑严密的互联网金融生态链条上,如何充分合 ...
2015-11-02在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28