大数据营销的10大切入点 许多人感觉到大数据时代正在到来,但往往只是一种朦胧的感觉,对于其真正对营销带来的威力可以用一个时髦的词来形容——不明觉厉。实际上,还是应尽量弄明白,才会明白其厉害之 ...
2015-11-04大数据如何精确定位营销 大数据将是继云计算、物联网之后IT产业又一次颠覆性的技术变革。 电影《天下无贼》里有这样一句经典对白:“21世纪什么最贵?人才!”如今,选项可能还要加上一个:数据。 ...
2015-11-04大数据+大创意=?赚大钱 在大数据时代背景下,品牌商一方面要借助大数据的整合应用,另一方面要从目标受众的角度出发,不断推送让受众喜闻乐见的原创内容,才能真正做到品牌更加精准化、更加深层化 ...
2015-11-04大数据公司实践零售O2O:打通线上线下 大数据公司这样实践O2O:通过线上线下会员打通识别同一人、全触点数据采集、建立大数据管理平台支撑上层应用系统辅助零售商进行大会员管理与经营管理决策以及个性化 ...
2015-11-0415个IT技术人员必须思考的问题 行内的人自嘲是程序猿、屌丝和码农,行外的人也经常拿IT人调侃,那么究竟是IT人没有价值,还是没有仔细思考过自身的价值? 1.搞IT的是屌丝、码农、程序猿? ...
2015-11-03数据分析浅谈 从以下几个方面入手,什么是数据分析,怎么做数据分析,为什么要做数据分析,如何才能做得更好。 1.什么是数据分析 所谓数据分析就是将产品相关的数据收集整合,然后利用特定 ...
2015-11-03四个要素,轻松搞定企业大数据规划 成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产,企业着手实施大数据战略要着重考虑这四大方面,管理者需要在这四方面做好规划,才能 ...
2015-11-03数据挖掘与数据建模的九大定律(2) 第六,洞察律:数据挖掘增大对业务的认知。 数据挖掘是如何产生洞察力的?这个定律接近了数据挖掘的核心:为什么数据挖掘必须是一个业务过程而不是一个技术过程 ...
2015-11-03数据挖掘与数据建模的九大定律(1) 数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践 ...
2015-11-03关于数据分析,聪明人常犯的5个错误 就算了解数据分析,聪明人在进行数据分析时,也会犯错。下面5个错误就是聪明人也常犯的5个错误: 1. 走得太快,没空回头看路。 初创公司里的人们仿佛 ...
2015-11-03互联网时代,你应该了解的五种物联网大数据 大数据是我们这个时代最伟大的经济机遇之一。但它的概念非常模糊。在一些谈话中,不同的参与者用“大数据”所表示的意思可能有以下三种:1.大量的数据;2.超 ...
2015-11-03O2O的大数据金矿应以什么姿势挖掘 首先我们先来分清数据在商业社会中产生的两端,一端是TO B端,也就是商家端,这个部分在银行表现有企业的存贷等数据;零售业则是商品属性、进价、商家类型等数据。说白 ...
2015-11-03抓住大数据的历史机遇 大数据正在创造新理论、新技术、新价值,带来大机遇、大挑战、大发展,在国家治理、社会发展、经济科技创新中的引领作用日益凸显,成为推进时代变革发展的重要切入点和增长点。 ...
2015-11-03“大数据”做P2P 风控靠谱吗 P2P平台傍上“大数据”听着美美的,然而事实上绝大多数的P2P平台并没有大数据资源和分析能力,所谓的风控很可能是天方夜谭。而相对来说,线上、线下相结合的风控模式安全性更高 ...
2015-11-03SPSS学习笔记之—生存分析的Cox回归模型(比例风险模型) 一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡 ...
2015-11-02一张报表奋斗N晚?数据分析对它说“NO” 双十一即将来临,伴随着销售量的一路上升,各类数据也接踵而来。适当的统计分析可以提取有用信息、形成有效结论,这一过程的良好操作对于店铺的持久发展意义非 ...
2015-11-02大数据时代-如何才能把营销数据落到实处 在大多数公司,营销人员负责评估市场竞争。因此,将近60%的信息专员都会向营销部门报告分析数据,然而大多数营销人员并不能战略性地运用这些竞争分析,只是不断 ...
2015-11-02物联网加剧大数据网络问题 运营商如何应对 网络运营商和服务提供商正在加紧对物联网的准备——而物联网将收入机会与技术挑战混合在了一起。 消费者将要为物联网设备而疯狂,这些设备从穿戴 ...
2015-11-02物联网时代 工业大数据八大应用场景 工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链 ...
2015-11-02如何利用互联网大数据这桶万金油 互联网金融在中国的喷发式成长带动了个人信用征信的强大需求,新型征信市场体系的建立又带动了大数据产业的发展,在这条逻辑严密的互联网金融生态链条上,如何充分合 ...
2015-11-02Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04