京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析浅谈
从以下几个方面入手,什么是数据分析,怎么做数据分析,为什么要做数据分析,如何才能做得更好。
1.什么是数据分析
所谓数据分析就是将产品相关的数据收集整合,然后利用特定的方法去分析这些数据,从中发现规律或是得到结论。
这些特定的方法可以包括专业的统计学、数学建模等,也可以从数据的维度和广度出发,数据收集或对比、总结相似数据的相同性、异常数据出现的可能原因,这类分析比较偏人文学科,可能数学难度不高,但是利用独特的数据角度,同样可以得到非常有价值的结果。
2.怎么做数据分析
不论怎么样做数据分析,我们都需要明确数据分析的目标,清楚每个原始数据和中间数据的意义,从中发现问题、得到结论或是验证想法。
当你确认了数据分析目标之后,需要的就是去确定哪些数据对于目的是有用的。因为数据有很多,不可能将所有的数据考虑到,所以这时候就需要根据经验或是业务知识去找到最可能和目的相关的原始数据,整理收集这些数据,方便以后的分析。
目标清楚、原料充足之后,我们便开始考虑如何利用这些资源去做出一道大餐。
比如在APP的数据分析中,可以得到的数据有新增用户、活跃用户、留存、渠道流量、版本数据、行业数据、自定义埋点数据等,这些数据目前还都是质量不错的原材料,还需要经过大厨的烹饪才能色香味俱全。
那么这时候大厨的厨艺就是数据分析的关键了。有的人精通数学,懂得如何快速准确建模;有的人通晓业务,明白每个数据背后的商业意义;有的人长于世 事,能从数据中看到隐藏的情感并为己所用;有的人善打地基,清楚稳定的数据架构可以为发展提供源源不断的动力。总之,利用不同的手艺做出来的数据大餐各有 所长,互相支持,缺一不可。
3.为什么做数据分析
数据分析永远都是为了产品的发展而服务,一切的目的无外乎:获得用户、留住用户、增加收益,而数据正好可以告诉我们在这三个点上的表现,同样这也是最客观和准确的途径,为我们的策略提供参考。
所以数据分析就是了解产品、暴露问题或发现惊喜(真相)、分析原因、思考方案、结果验证。
4.怎么坐得更好
评价更好是从目标出发,当目标的完成度越高、质量越好,那么数据分析的工作就是在变得更好。
除了前面提到的目标明确、方法牛逼外,同时也要让团队或负责人清楚了解到产品的真实表现,告诉他们现在存在的问题,与团队一起及时找到问题解决方 案,明确如何调整产品策略或是制定新的玩法去提高产品表现,即获得更多的用户、留住更多的用户,增加产品的收益。所以在这一过程中如何让别人更快更好的理 解你的分析,让他们支持你的工作也是很重要的一环,甚至比数据分析本身还重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22