网站数据分析思路导图 下图是一个网站分析的生命周期示意图,在确认好分析需求并收集好我们所需要的数据后(强调一下,明确分析需求很重要,这可以避免为了分析而分析),我们就可以充分使用网站分析工具的 ...
2015-11-13
数据分析、数据挖掘、BI及分析型CRM的区别与联系 市场领域里的数据分析,是用数据来描述过去和现状。比如到目前为止,前5年的市场份额,及增长率;目前客户的年龄、地域、收入分布等等。数据分析可以满 ...
2015-11-13
网页数据分析 vs 移动数据分析:有何不同 一篇Web Analytics vs. Mobile Analytics: What’s the Difference?的文章,在我evernote里躺了几个月,最近几天刚好项目节奏不太忙,回顾了下我evernote里的很 ...
2015-11-13竞争对手的数据分析方法 确定了你的竞争对手并收集到足够数据后,我们就要对他们进行深度分析了。 竞争对手分析路径 竞争对手分析共分为10个步骤,如图1是分析路线图。这 ...
2015-11-13大数据撬动创新创业新契机 大数据被视为云计算之后的又一科技热点。从走在前沿的互联网新兴行业,到与人们生活息息相关的医疗、电力、通信等传统行业,大数据浪潮无时无刻不在改变着人们的生产生活方式 ...
2015-11-13
大数据与深度学习是一种蛮力 Facebook去年底挖来了一个机器学习大神Vladimir Vapnik,他是统计学习理论和支持向量机的主要发明者。Vladimir Vapnik被称为统计学习理论之父,他出生于俄罗斯,1990年底移 ...
2015-11-12大数据时代莫忘信息安全 围绕个人信息的采集、加工、开发和销售正悄然变为一条“数据产业链”,由于信息泄露造成的“精准营销”和金融诈骗活动,给人们的隐私和财产造成了难以估量的损失。我们既不能熟 ...
2015-11-12大数据的边界:被改变的与无法改变的 “大数据”的汹涌澎湃,让人们逐渐意识到,由此带来的,极有可能是一场发生在几乎所有领域的颠覆性革命。只是,虽然坊间有关大数据的论著很多,但敢于将这种趋势上升到 ...
2015-11-12
数据也会说谎:常见的数据造假三种形态 日常生活工作中,处处都会与数据打交道,但你知道数据是会“说谎”的,即你看到的数据结果并不是事实。本文介绍一些常见的说谎场景以及如何避免。 一、图表 ...
2015-11-11大数据时代:九种从大数据中获取价值的方法 现在已经有了许多利用大数据获取商业价值的案例,我们可以参考这些案例并以之为起点,我们也可以从大数据中挖掘出更多的金矿。 去年TDWI关于管理大数 ...
2015-11-11大数据时代:九个大数据应用领域 随着大数据应用越来越广泛,应用的行业也越来越低,每天都可以看到大数据的一些新奇的应用,从而帮助人们从中获取到真正有用的价值。很多组织或者个人都会受到大数据分析影 ...
2015-11-11
深度学习和拓扑数据分析的六大惊人之举 假如你有一个一千列和一百万行的数据集。无论你从哪个角度看它——小型,中型或大型的数据——你不可能看到它的全貌。将它放大或缩小。使它能够在一个屏幕里显示 ...
2015-11-11浅析大数据时代下市场研究方法 大数据时代新的市场研究方法使“无干扰”真实还原消费过程成为可能,智能化的信息处理技术使低成本、大样本的定量调研成为现实,这将推动消费行为及消费心理研究达到一个 ...
2015-11-11数据挖掘与预测分析术语总结 数据挖掘目前在各类企业和机构中蓬勃发展。因此我们制作了一份此领域常见术语总结,希望你喜欢。 分析型客户关系管理(Analytical CRM/aCRM):用于支持决策,改善公司 ...
2015-11-11
数据可视化和信息图成功的要素 如果仅仅是能够将数据转化成漂亮的图表,或者是设计出20种不同式样的图表来解释你的观点,并不说明你应该利用所有这20种图表,甚至是其中一种。 如果要成功 ...
2015-11-11从“道”的角度来论述大数据对企业的价值 本文更多是从比较高的层面,也许就是我们说的“道”的层面去思考大数据如何对于一个企业产生价值。有很多观点的值得借鉴,值得大家去深入思考的,本文更多是一 ...
2015-11-11
大数据分析的集中化之路 建设银行大数据应用实践PPT 刘贤荣先生现任中国建设银行总行数据管理部副总经理,中国人民银行金融统计分析“双百人才”。国内首个风险加权资产(RWA)计算系统设计专家,参与制定 ...
2015-11-11几种常见的excel错误和解决方法 使用excel的初学者经常会遇见一些比较奇怪的问题,让人又难以看懂,比如说# N/A!、#VALUE!、#DIV/O!等等,出现这些错误的原因有很多种,但是你真的知道这些到底是怎么 ...
2015-11-10我们该如何进行数据分析之入门篇 本篇目的主要是把“产品健康度”监控相关的指标(描述性指标,告诉我们是什么)做一个系统的梳理,希望能够帮助刚刚入行或准备入行的朋友,快速熟悉游戏运营分析相关的 ...
2015-11-10产品经理做市场调研和数据分析的方法 产品经理,你对用户的需求了解多少呢?你知道用户想要什么样的产品吗?你想知道用户将会如何看待你的产品吗?你想知道 ...
2015-11-10在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23