京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们该如何进行数据分析之入门篇
本篇目的主要是把“产品健康度”监控相关的指标(描述性指标,告诉我们是什么)做一个系统的梳理,希望能够帮助刚刚入行或准备入行的朋友,快速熟悉游戏运营分析相关的指标含义及应用场景。
关于渠道优化、运营活动分析、流失分析、用户行为分析等具体案例分析会在“进阶篇”中跟大家分享。
在这里还是要重申一个观点:
1、数据分析的本质是一种意识,一种以客观事实为导向进行产品管理和客户管理的意识;
2、数据分析师本质上是一个产品分析师,只是在分析的过程中从数据的角度进行切入而已;
3、数据分析的价值在于数据应用,没有业务理解和对各部门作业流程的详细了解,是无法对数据作出分析和解释的;不熟悉业务的数据分析师只能称为“数据取数员";
对移动游戏数据这块, 我一般喜欢用经典的“水池图”来做说明;
作为CP,无论我们从什么角度做数据分析,最终还是希望能够帮助我们更好的实现最终目的:赚到更多的¥
从一个庸俗易懂的公式出发:
Revenue = AU * PUR *ARPPU
统计周期内的收入流水 = 统计周期内的活跃用户规模 * 活跃用户付费比例 * 平均每付费用户付费金额;
因此,我们要做的事情是:“最大化活跃用户规模,并在此规模之上最大化用户付费转化及付费强度”.
【最大化活跃用户规模】:如果我们把当前的活跃用户看做一个水池,要想提升水池内的含水量,我们可以有几种做法:
1.开源:让更多的水注入,导入更多用户;通过市场推广:
1.1拓展新渠道;
1.2增加推广费用,提高渠道导入、媒体广告导入量;
1.3自有资源与其它APP换量;
1.4口碑管理、增加市场认知度和认同度,提高自然导入量;
2.节流, 减少水池的出水量,降低用户流失;
2.1.通过运营活动、版本更新 提高用户的游戏参与度(玩的更久)
2.2.通过老玩家召回的活动,唤醒沉默用户;可以想象成,水池中的部分水分被蒸发,并没有真正的离开流走,可以再通过降雨的方式重新回到水池中;
【最大化用户付费转化及付费强度】:在维持水池水量的同时,我们可以通过各种养殖和捕捞的方式(游戏内的消费埋点、促销、充值活动等)打到更多的鱼;
当然,价值挖掘 和 用户规模的维护 并不是完全割裂开的,过度的追求高ARPPU也有可能导致用户的流失增加;这是一个相辅相成的过程;
综上所述,移动游戏数据分析指标可以分解为3个模块:
1、市场推广相关指标(包括:激活、上线、各节点转化率、成本指标、渠道质量等),它的任务是帮助我们进行“渠道优化”和“产品优化”,最小化用户获取成本,实现更多的新增导入;
2、用户活跃 & 留存相关指标(包括:DAUMAU、AT(日均使用时长)、日、周、月留存、回归率等),它的任务是帮助我们在宏观数据表现层面,快速判断产品存在的问题,并对运营活动及产品改进给予“方向性”指导;
3、用户付费相关指标(包括:LTV、PUR(活跃用户付费比)、ARPPU(每付费用户付费强度)、充值结构、充值时段等),它的任务也是帮助我们在宏观数据表现层面明确产品盈利能力,并对运营活动及产品改进给予“方向性”指导。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26