大数据与深度学习是一种蛮力
Facebook去年底挖来了一个机器学习大神Vladimir Vapnik,他是统计学习理论和支持向量机的主要发明者。Vladimir Vapnik被称为统计学习理论之父,他出生于俄罗斯,1990年底移居美国,在美国贝尔实验室一直工作到2002年,之后加入了普林斯顿的NEC实验室机器学习研究组,同时任哥伦比亚大学特聘教授。2014年,Vladimir Vapnik加入Facebook人工智能实验室。
Vladimir Vapnik
近日,Vladimir在俄罗斯最大的搜索引擎公司Yandex的大会上发表了讲话,重点讨论了深度学习是否以蛮力取胜。来自加利福尼亚大学圣地亚哥分校的Zachary Chase Lipton博士详细记录了会议内容,并整理成了文章:
上周,我来到柏林参加机器学习展望和应用大会。这个大会由Yandex举办,主要谈了Deep Learning和Intelligent Learning两个问题,它们经常作为对比的概念出现。
虽然我自己也是演讲者之一,但是整个会议的高潮部分,还是关于深度学习的方法论,其中经验主义和数学推理中的矛盾部分。
第一条是关于深度学习,讨论的是背后的数学支撑,以及未来的方向。问题包括了模型的可解释性和医疗领域的应用。到了周三晚上,Vladimir Vapnik也参与了讨论,说的是知识如何在不同的个体之间传递。Vladimir的哲学观横跨了机器学习、数学和智能的源头,并且挑战了深度学习的方法论,这很有争议。
其实在今年夏天,我就写文章说机器学习的成功是大数据时代经验主义的胜利。在里面我强调说,过度去拟合数据,虽然能在真实数据中得到检验,但里面会有很大风险,至少比基于数学推理建立的系统风险大得多。在这次会议中,我听到了Vladimir在这方面的观点。
为了避免混淆视听,我得强调:我是一个深度学习的实践者。我个人并不否认深度学习,而且对它的先行者和火炬手充满尊敬。但我也同样相信,我们应该对深度学习的可能性抱有开放性的态度:
即会有一些数学模型,能够更好的指明未来发展方向,开启新的方法论。
很显然,当我们去咀嚼和消化这些观点的时候,能够得到很大的价值。
大数据与深度学习是一种蛮力?
尽管Vapnik当场说了很多观点,但是最核心的还是援引了爱因斯坦关于上帝的隐喻。简单的说,Vapnik假设了一个理论:想法和直觉要么来自上帝,要么出自魔鬼。而区别在于,上帝是智慧的,而魔鬼往往不是。
在作为数学家和机器学习研究和践行者的生涯中,Vapnik得出了一个结论:魔鬼往往来自于蛮力(Brute Force)。进一步说,如果承认深度学习系统在解决问题时不可思议的表现,那么大数据和深度学习,都有某种蛮力的味道。
不过,我自己并不同意深度学习必须等同于机器蛮力。我们如今也能看到对于大数据的观点争论,其中Vapnik和Nathan Intrator教授就说:小孩不需要几亿的标签样本以完成学习。虽然有大量带有标签的数据时,学习会成为一件比较容易的事,但如果依赖这样的方法,我们就错失了自然界中关于学习的基本原理。
也许,真正的学习只需要数百样本,而我们现在却只有非常大的数据量才能完成学习。如果我们不去探寻学习的本质,那就是在屈从于懒惰。
我们现在的深度学习并非科学。确切的说,机器学习和核心任务是理解计算本身,而现在的方法和它有所背离。这就好比任务是制造小提琴,而我们扮演的角色不过是小提琴演奏者,虽然也能创作美妙的音乐,也有演奏的直觉,但我们并不知道小提琴如何创造出音乐。
进一步说,很多深度学习实践者,他们对数据和工程有很好的感觉,但其实不知道这里头是怎么回事。所以在目前的深度学习方法中,参数的调节方法依然是一门“艺术”,而非“工艺”。
在算法和模型上,我们是否能发明所有东西?
Vapnik认为,在机器学习的算法和模型上,我们并不能发明所有东西。他坚持说,他自己并没有如此的聪明才智,以完成这些算法模型的发明。(这似乎也在暗示,其他人也没有那么聪明,去发明这些玩意)
按照Vapnik的意思,我们在机器学习上发明的东西是微不足道的。真正重要的东西,来自于我们对数学本质的理解。就深度学习来说,模型经常被发明出来、品牌化并申请专利,但这些相比于真正由数学驱动的机器学习,就显得很一般了。
关于深度学习的反思,来自纽约州立大学的顾险峰教授也有很多理解。顾险峰认为,深度学习方法深刻地转变了学术研究的范式。以前学者们所采用的观察现象,提炼规律,数学建模,模拟解析,实验检验,修正模型的研究套路被彻底颠覆,被数据科学的方法所取代:收集数据,训练网络,实验检验,加强训练。
在深度学习新方法下,严格的数学推理缺失了。比如说地图四色定理的证明,数学家将平面图的构型分成1936种,然后用计算机逐一验证。当然在足够的算力下,这可以证明地图四色定理。但是在这个过程中,没有新颖概念提出,换言之,机械蛮力代替了几何直觉。
而在数学历史上,对于一个著名猜想的证明和解答,答案本身也许并不重要,在寻找证明的过程中所凝练的概念,提出的方法,发展的理论才是真正目的所在。机械定理证明验证了命题的真伪,但是无法明确地提出新的概念和方法,实质上背离了数学的真正目的。
所以说,这是一种“相关性”而非“因果性”的科学。历史上,人类积累科学知识,在初期总是得到“经验公式”,但是最终还是寻求更为深刻本质的理解。例如从炼丹术到化学、量子力学的发展历程。
人类智能最为独特之处也在于数学推理,特别是机械定理证明,对于这一点,机器学习方法是无能为力的。当人的数学推理缺失的时候,仅仅依靠机器蛮力,就会遇到很大制约。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03