
关于大数据的九点思考:没有你想的那么神奇
大数据思考之一
任何一个网站的数据都是人们互联网行为数据的很小的一个子集,无论这个子集多么全面,分析多么深入,都是子集,不是全集。对于企业来讲,竞争对手的数据价值远远超过自己网站数据的价值,从量级上,对于所有公司都一样,自己拥有的数据远远小于全集数据。看起来的全数据恰恰是残缺数据。
大数据思考之二
数据量的大幅增加会造成结果的不准确,来源不同的信息混杂会加大数据的混乱程度。研究发现:巨量数据集和细颗粒度的测量会导致出现“错误发现”的风险增加。那种认为“假设、检验、验证的科学方法已经过时”的论调,正是大数据时代的混乱与迷茫,人们索性拥抱凯文凯利所称的混乱。
大数据思考之三
互联网用户的基本特征、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户的基本行为规律。体系完整是所有分析性工作的第一步,完整的框架甚至胜过高深的模型。人类的认识最大的危险是不顾后果的运用局部知识。如果只关心自己网站数据,其分析基础必然是断裂数据。
大数据思考之四
现在谈到大数据,基本有四个混乱观念:第一,大数据是全数据,忽视甚至蔑视抽样;第二,连续数据就是大数据;第三,数据量级大是大数据;第四,数据量大好于量小。对应的是:抽样数据只要抽样合理,结论准确;连续只是一个数据结构;大量级的噪音会得出错误结论;大小与价值关系不大。
大数据思考之五
大数据不是新事物,天气、地震、量子物理、基因、医学等都是,借鉴他们的方法有益。他们用抽样调查。互联网数据挖掘方法论也如此,不同的是更难,因为人的复杂性。既然是关于人的研究就需应用所有研究人的方法梳理大数据。只要懂编程、懂调动数据的人就可以做大数据挖掘的说法是谬误。
大数据思考之六
大数据分析中分析构架为第一要著,算法也极为关键,在最近的大数据处理中发现:解析网址后的分类是是一个难点,主要有几个方面,一个千万人的网络行为数据一天产生的域名大约50000个,虽然有一些算法,但是混淆、难以辨认、连续更新与判别是分析中的重要步骤,简单分易,精细分难。
大数据思考之七
算法中,只要包含文本,就必然有两个关键基础技术:关键词(字典)与语义分析,关键词技术成熟,语义技术是瓶颈,中文语义太难,能解决50%的团队就不错了,尤其是社交语言,比如"真可以!"何解?需上下文。希望风投们多鼓励此类基础技术研发,突破此瓶颈是大数据挖掘的关键点之一。
大数据思考之八
社交数据挖掘中,很多团队集中在运用推特瀑布思路,就是可视化技术,其构图精美值得称道,问题是,其理论还是沿用三十多年前的社会计量法,概念还是局限在点、桥、意见领袖等小群体分析,不适合巨网,突破可视化框架的社交分析需要理论探索和实践努力。
大数据思考之九
移动互联网对社会生活的影响本质是时间与空间的解构,分析这类大数据需要把握这两点,如果仅仅分析app和网络使用行为,那么分析上就失去了移动的意义。单纯看流量、点击率等简单数字无法解决复杂的营销问题。不创新的延续原有思维模式是人类思考惰性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07