京公网安备 11010802034615号
经营许可证编号:京B2-20210330
写给数据分析师的几点建议
几点想法,分享给刚入门的数据分析师,也跟经验丰富的数据分析师做下探讨。
数据对于业务来讲,是KPI的衡量标杆,也是行动指南。但一旦涉及到立场和方向性的东西,必然有利益触发点的问题。比如同样的一次活动的网站转化率是1.2%,是好还是坏?这是做数据分析第一步要进行的定位,也就是我们所说的下结论。好坏的区分在于比较,如何比较呢?我们知道比较分析方法有环比、占比、定基比、横向比、纵向比等,其中如环比可以比较昨日、上周今日、上月今日等,不同的时间对比出的结果一定有差异,甚至是迥然不同的结果。那面对这种情况,除了分析师的经验以外,在都符合统计学规律的前提下该如何判断活动效果好坏?
第一步结果总算出来了。
那么假设结果是好的(先不管对比的是什么时间),那确实是好的吗?我们知道做活动效果肯定会好啊。尤其在中国,只要价格低,无论多么差的用户体验,无论网站UI多么垃圾,无论送货多么慢,订单转化率一定会起来。这就意味着,无论你的营销、运营做的怎样(只要不是特别特别差),各个渠道、各个节点转化率都会上来。这时候,你会怎样分析?其中有多少是归于渠道或运营本身的优化因素,而有多少是归于活动影响?
假设我们能找出其中归于活动本身或渠道、运营本身的影响因素,结果出来后可能是——刨去活动影响,渠道、运营做的转化率其实变化不大(事实上通常是这样的,但我们不能否认他们的功劳,毕竟没有流量、没有运营,网站无法正常运行),工作效果不明显啊?你会怎样?直接告诉你的同事他们的工作没效果?可能你不会那样做,那此时你该如何取舍?尽职尽责做好一个数据的本职工作还是考虑下其他因素?怎么做才能既让数据价值最大化又能不打击同事的工作积极性?
做过大型数据分析的同学刚开始或多或少有这样的经历,拿到数据后经过分析发现了一个异常分析点,做了N多预处理、N多牛叉的模型,N多分析和多维钻取,最后把报告呈现出来,跟业务沟通的时候,业务只说了一句话“哦,那个异常数据啊,那是我们的测试数据”,然后我们会不会疯掉?
为什么会出现这种问题,因为拿到数据后没有进行一步必要的步骤——数据质量验证。什么是数据质量验证?我理解的是首先要理解数据来源、数据统计和收集逻辑、数据入库处理逻辑;其次是理解数据在数据仓库中是如何存放的,字段类型、小数点位数、取值范围,规则约束如何定义的;第三是明确数据的取数逻辑,尤其是从数据仓库中如何用SQL取数的,其中特别是对数据有没有经过转换和重新定义;第四是拿到数据后必须要有数据审查的过程,包括数据有效性验证、取值范围、空值和异常值处理等。
当这些工作都做充足之后才是数据分析。但可惜的是大多数数据分析师都不关注数据质量问题,甚至对数据的理解仅限于表现定义。当然做足了底层的工作,你会发现做起数据来事半功倍,并且你的结论和推到是经得起验证和考究的。
数据的价格在于对业务的驱动,不管你的业务对象是你的BOSS还是同事。很多情况下,我们的数据分析师是这样工作的:一天到晚闷头做事,出数据写报告。结果出来的数据结论和建议会有这么几种情况:
受至于数据的普遍理论影响,很多数据分析师会认为会多少个模型,多少种算法是一件多么牛叉的事情,诚然,数据尤其在面对海量数据时,普通的数据分析方法常常感觉无能为力,但这并不意味着工具和方法就决定了数据分析师的层次。举例来说,通常我们用的数据挖掘模型,业务都很难理解,假如你花很长时间作出一个关联模型,如果你这样告诉你的业务受众:A商品和B商品关联程度较高,从支持度,置信度和提升度来讲效果显著。那我们可以预想到这个挖掘的结果很难落地,并且意义不大。从业务受众实际应用层面来讲,两个商品关联度高意味着什么,意味着用户通常会一起购买这两件商品(也有可能是复购,具体看数据选取规则),那一起购买又怎样?我们是否可以把这两件商品做打包促销?是否可以做关联推荐?是否可以做个性化营销?是否可以引导用户消费倾向?甚至在活动页面设计上,是否可以将相关度高的品类,品牌摆放在一起来促进销售?又或者这是否可以做流失挽回的参照指标,重新审视之前每次的广告"通发"?这才是数据价值,无法跟业务结合的数据模型毫无价值。
很多时候我们希望等待我们的业务自己上门提需求,并且以需求为数据分析的起点,似乎很多教材也是这么说的,基于业务需求的数据分析目的更明确,分析结论和效果落地也会阻力更小,但实际情况是业务通常是数据不敏感的,主要表现在:
数据不只是在业务执行之后才会发生作用的,在业务执行前的预测与计划,在业务执行过程中及时预警与恶意数据监控都是数据能发挥作用的场合,并且这些都能在“坏数据”、“坏结果”出来之前通过数据区去改善,这些将比结果出来后再去分析要更有意义。
作为数据分析师,需要不断提高自身能力。能力包括业务理解能力和数据分析能力,既能把业务“粗糙的要求”转换成数据需求,又能将数据结果转化成业务可理解、可执行、有时间限制、能验证结果的数据输出。
我相信数据是一门艺术,良好的数据能力可以处处在业务中展现能力,并且确实可以提高业务价值,这是数据存在根本,也是数据分析师立足的根本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22