R语言与数据分析之三:分类算法2_数据分析师 比较现代的分类算法:决策树和神经网络。这两个算法都来源于人工智能和机器学习学科。 首先和小伙伴介绍下数据挖掘领域比较经典的Knn(nearest n ...
2014-12-12R语言与数据分析之三:分类算法1_数据分析师 分类算法与我们的生活息息相关,也是目前数据挖掘中应用最为广泛的算法,如:已知系列的温度、湿度的序列和历史的是否下雨的统计,我们需要利用历史的数据 ...
2014-12-12R变量生成时的时间_数据分析师 在R语言中怎么获得一个变量生成时的时间,比如 x=1 x生成的时间 一个函数能够view 最近生成的变量。 系统默认应该没有记录各个对象生成的时间点这个过程 ...
2014-12-12问题1:空间数据挖掘有哪些常用方法,举例说明一种方法的原理及应用. 答:空间数据挖掘的常用方法有:统计法,聚类方法,关联规则发掘方法,Rough集方法,神经网络方法,云理论,证据理论,模糊集理论, ...
2014-12-12如何丰满地做SWOT分析_数据分析师 SWOT分析通常在创新流程的早期执行,初衷在于帮助企业在商业环境中找到自身定位,并在此基础上作出决策,现在得到了更广泛的使用。 其中 SW 代表公司内部因素,O ...
2014-12-12麦肯锡:如何利用大数据改进制造业_数据分析师 麦肯锡咨询公司发布《如何利用大数据改进制造业》的文章,就大数据及高级分析如何使生物制药、化工和离散制造更加合理化给出深度分析。文章特别提到,那 ...
2014-12-1228页PPT揭秘京东提升第三方卖家销量的“数据罗盘”,把用户变傻? 什么是数据罗盘? 数据罗盘产品融合了京东云计算技术,跨越了业界大数据、高并发、实时展示的三大门槛,为京东开放平台的商家提 ...
2014-12-12大数据下城市计算的典型应用_数据分析师 近年来,随着感知技术和计算环境的成熟,各种大数据在城市中悄然而生。城市计算就是用城市中的大数据来解决城市本身所面临的挑战,通过对多种异构数据的整合、 ...
2014-12-12三大案例告诉你互联网新兴企业为什么需要实时流数据分析 亚马逊AWS的Kinesis是一款实时流数据捕获和分析系统,是典型的亚马逊强调的更成熟的、非商品化的服务。Kinesis用户可以创建应用程序分 ...
2014-12-12P2P如何用互联网大数据精准获客_数据分析师 作为一家在线上P2P领域表现尤其亮眼的平台,宜信宜人贷在发展过程中一直颇为注重对互联网技术与思维的利用。今年,宜信宜人贷先后推出“码上贷”、“极速模 ...
2014-12-12数据分析师常见的10道面试题解答 1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个 ...
2014-12-11数据挖掘有很多不同的实施方法,如果只是把数据拉到Excel表格中计算一下,那只是数据分析,不是数据挖掘。本文主要讲解数据挖掘的基本规范流程。CRISP-DM和SEMMA是两种常用的数据挖掘流程。 数据挖掘的一般步骤 ...
2014-12-11大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。 这群人在国外被叫做数据科学家(Data Scientist),这个头衔最早由 ...
2014-12-11数据挖掘分类技术 从分类问题的提出至今,已经衍生出了很多具体的分类技术。下面主要简单介绍四种最常用的分类技术,不过因为原理和具体的算法实现及优化不是本书的重点,所以我们尽量用应用人员能够理解的语 ...
2014-12-11马云在2012年网商大会上的演讲中说过:“假如我们有了一个数据预报台,就像为企业装上了一个GPS和雷达,企业的出海将会更有把握。”。这里的数据预报台就是下文所述的商业智能。 什么是商业智能(Business Inte ...
2014-12-11简而言之,数据挖掘(Data Mining)是有组织有目的地收集数据,通过分析数据使之成为信息,从而在大量数据中寻找潜在规律以形成规则或知识的技术。在本文中,我们从数据挖掘的实例出发,并以数据挖掘中比较经典的 ...
2014-12-11分类算法的应用 本节将为大家介绍数据挖掘中的分类算法在一些行业中的代表性应用。我们将算法应用分为表述问题和解决过程两个阶段,表述问题即需要运用数据挖掘能够理解和处理的语言来阐述业务问题,最重要的是 ...
2014-12-11大数据的四个价值_数据分析师 大数据是当今热门的话题,对于大数据很多人提出过这样那样的观点,那么大数据到底是什么,能够给我们带来怎样的价值呢?瑞意趋势CEO 梁海宏来和大家做一下解读。数量巨大 ...
2014-12-11大数据 价值何在(5)_数据分析师 大数据可以让我们更好地了解自己所生存的社会,并帮助我们做出更加明智的选择 尼丽·克洛斯:世界上每分钟产生1700TB 的数据,但是吸引我们的不仅仅是这个庞大的 ...
2014-12-11大数据 价值何在(4)_数据分析师 在充分认识到大数据带来机遇的同时,也应该认识到大数据带来的可能性风险 肯尼思·丘基尔:大数据时代令隐私保护问题更加突出。大数据的价值在于存储后的再 ...
2014-12-11Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04