所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线分析处理程序。有些人会说:「我已经有OLAP的工具了,所以我不需要Data Mining。」事实上两者间是截然不同的,主要差异在于Data Mining用在产 ...
2014-12-10若将Data Warehousing(数据仓库)比喻作矿坑,Data Mining就是深入矿坑采 矿的工作。毕竟Data Mining不是一种无中生有的魔术,也不是点石成金的炼金术,若没有够丰富完整的数据,是很难期待Data Mining能挖掘出什 ...
2014-12-10硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般将之定义为Data Mining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,Data Mining有相 ...
2014-12-10在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: \"尿布与啤酒\"的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。 ...
2014-12-10不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核 ...
2014-12-10数据结构之队列_数据分析师 栈是“后进先出”(LIFO,Last InFirst Out)的数据结构,与之相反,队列是“先进先出”(FIFO,First InFirst Out)的数据结构。 队列的作用就像售票口前的人们站成 ...
2014-12-09一起经典的大数据运用案例:四步锁定融绿并购案实名举报人 使用大数据,只用四步 第一步锁定:小股东 宋卫平在接受《中国地产》客户端“众筹调查小组”采访时表示,实名举报人是绿城中国 ...
2014-12-09矩阵分解与图计算框架_数据分析师 矩阵分解是推荐系统常用的手段,经常用来做用户偏好预测.在当下的推荐系统中,我们得到用户对于物品的评分矩阵往往是非常稀疏的,一个有m个用 户,n个商品的网站,它所收集 ...
2014-12-09大数据分析盈利时间长_数据分析师 继电脑和手机之后,谁能成为接入互联网的第三极? 去年下半年,有部分开发商为了能成为这“第三极”,推出了诸如“智慧城市”、“云服务”等一系列能够接 ...
2014-12-09大数据解救企业融资难的问题_数据分析师 为期三天的第九届浙江金融理财博览会暨第六届浙江中小企业金融产品展示会(以下简称“金博会”)日前落下帷幕。此次金博会吸引了包括工、农、中 ...
2014-12-09懂得从大数据中还原数据真实_数据分析师 大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。 要懂得从大数据中还原数据真实,《决战大数据: ...
2014-12-09数据挖掘中易犯的10大错误_数据分析师 这10大易犯错误包括: 0. 缺乏数据(Lack Data) 1. 太关注训练(Focus on Training) 2. 只依赖一项技术(Rely on One T ...
2014-12-0922个免费的数据可视化和分析工具推荐_数据分析师 本文总结推荐22个免费的数据可视化和分析工具。列表如下: 数据清理(Data cleaning) 当你分析和可视化数据前,常需要“清理”工作。比 ...
2014-12-09实用的大数据技巧合集_数据分析师 大数据应用的安全性方面往往被忽视或者被视为次要的需求。但是,数据的安全性在数据处理过程有着十分巨大的影响。本文将介绍一些保护大数据应用的步骤和工具。 随着大 ...
2014-12-09大数据的思想形成与价值维度_数据分析师 在漫长的数据蓄水过程中,数学和统计学逐渐发展,人们开始注意对数据的量化分析,在人类进入信息时代以前这样的例子就不胜枚举。比如经济上,黄仁宇先生对宋朝 ...
2014-12-08大数据与传统数据的区别_数据分析师 一直以来,大数据领域学习、采访、总结、归纳的一些要点。但由于大数据还处于前期发展期,因此不可能像一些成熟的硬件产品线那样,给大家相对成熟的理论。大数据落 ...
2014-12-08如何迎战网站流量_数据分析师 首先要合理地对流量进行分析,无论是重新路由或者增加容量,其实根本上只有一种方法,那就是实现网络全面可视。以下是几条“最佳方式”,可以更好地确保这项工作获得成 ...
2014-12-08大数据应用的四个战场_数据分析师 如今,当人们谈到欺诈时,可能第一个想到的是银行,事实也是如此——银行是最容易受到威胁的行业。但过去Interac Association的一份报告显示在加拿大借记卡欺诈损失实 ...
2014-12-08数据挖掘的三大要素_数据分析师 我对数据挖掘和机器学习是新手,从去年7月份在Amazon才开始接触,而且还是因为工作需要被动接触的,以前都没有接触过,做的是需求预测机器学习相关的。后来,到了淘宝后 ...
2014-12-08以“上大学分析”为例体验什么是数据挖掘_数据分析师 某社会机构,收集了大量的学生考大学的数据。该机构希望找出一些规律,以推动更多的学生考大学。该机构委托你来做这个分析工作,给出具体的可以推 ...
2014-12-08Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04