
大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。
要懂得从大数据中还原数据真实,《决战大数据:驾驭未来商业的利器》一书传达的这个观点给笔者留下了深刻印象。大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。信息搜集需要成本,还将面临用户隐私意识等障碍。更大的成本来源于存储和分析。
信息和数据分布从来就遵循幂律特点,如果数据挖掘以拒绝遗漏为原则,将产生大量的无意义劳动消耗,因为根据一部分数据其实就可以得出足够推导出80%-90%的结论。再者,大数据分析的重要意义在于改善实时分析,对数据搜集及处理速度有很高的要求,譬如电商企业不得不切实提高与用户的有效互动,要尽可能依据掌握并不全面的用户数据给出推荐,并就疑难及时响应。相反,如果数据处理和响应总带有迟滞性,企业希望搜集到足够的、全面的用户数据再给予响应,就必然错过时机。
海量数据还可能包含大量看上去彼此矛盾,甚至根本就带有误导性的数据内容。《决战大数据:驾驭未来商业的利器》一书的作者是阿里巴巴集团商业智能部副总裁、数据委员会会长车品觉,他在书中描绘了消费者通过智能手机等终端购物的一种常见场景:消费者早上看到某款好看的衣服,想要购买,在网上搜出大批量的相关商品;正在挑选时,被叫去开会,在开会时打开手机应用,发现了有诱惑力的促销广告,就下单购买了另外一类商品(比如手机)。
这起场景中,消费者先后使用了手机端和PC端,如果均保持同一个用户名的登录状态,其搜索数据和最终购买数据汇集在一起显然会让许多数据分析师抓狂。如果企业要求数据分析师从这些数据挖掘、还原用户的真实需求,难度可想而知。如果这一个消费者在手机端、PC端还使用不同用户名,又该搜集哪些、多少数据,才能做到辨识其身份?
车品觉指出,“大数据的真正价值是将数据用于形成主动收集数据的良性循环,以带动更多的数据进入这个自循环中”。要做到这一点必然是困难的,上述场景非常常见,直接原因是普通消费者使用互联网具有多场景,完全可能灵活的轮换使用PC端、手机端、智能穿戴设备等终端;往深了说,移动互联网时代,很多人的注意力是高度涣散的。许多时候,用户可能长时间停留于某个页面,这并不能表明其一定是在专心停留阅读,更大的可能在于消费者这时有事走开了,或者切换到别的终端界面。因此,数据挖掘分析必须承认这种手段的相对有效性、局限性。
书中提出,数据具有5大价值:识别与串联价值(根据大数据中的核心数据对用户真实身份、真实行为进行还原)、描述价值(在特定框架内找出核心用户、紧密购买行为数据)、时间价值(在特定时间段分析历史数据)、预测价值、产出数据的价值。这其中提到的特定框架,也就是说从海量数据中根据关联性,提取核心有用数据的范围。比如一个企业要判断是否继续使用导航网站的广告,就要明确导航网站引进的新老用户比、引进的新老用户的投入产出比和转化率、推断一旦撤去广告会带来的流失影响,还要对竞争对手进行行为分析预测(对方可能加强导航广告投入),这些限定因素将使得数据提取及后续分析就不会毫无章法。
这本书第二部分对阿里巴巴的大数据实践作了基本介绍。阿里巴巴成长到今天的规模,还能继续驾驭宏大的产品线和业务范围,电商行业内外有识之士都认为这应归功于阿里巴巴能够很好的实现数据化运营,可以通过海量数据成功实现即便是细小范围内的业务对比、细分及趋势预估。车品觉分享指出,阿里巴巴数据化运营落地是从“人”做起,利用好了“混、通、晒”三板斧。“混”就是让数据分析师与业务部门的人经常“混”在一起,这是确保两大部门培养商业和数字直觉的前提;“通”就是打通“混”的数据;在此基础上,让数据得以最有效的获取、使用、分享、协同、连接和组合,就是“晒”。
车品觉认为,2011年起,阿里巴巴已经开始从数据化运营向运营数据发展,形成了良性循环,走到了运营数据的外三板斧“存、管、用”。“存”指的是搜集并存储有效数据;“管”涵盖了数据的安全管理、让数据更趋准确稳定、更好运用数据等范畴;“用”,就是要从数据本身实现分裂和重组,推动颠覆性创新。书中就此对“用”这一层次,结合作者长期以来的从业实践及对京东、一号店等其他知名电商企业运营经验的观察,展开了颇为深入的梳理剖析。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18