京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。
要懂得从大数据中还原数据真实,《决战大数据:驾驭未来商业的利器》一书传达的这个观点给笔者留下了深刻印象。大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。信息搜集需要成本,还将面临用户隐私意识等障碍。更大的成本来源于存储和分析。
信息和数据分布从来就遵循幂律特点,如果数据挖掘以拒绝遗漏为原则,将产生大量的无意义劳动消耗,因为根据一部分数据其实就可以得出足够推导出80%-90%的结论。再者,大数据分析的重要意义在于改善实时分析,对数据搜集及处理速度有很高的要求,譬如电商企业不得不切实提高与用户的有效互动,要尽可能依据掌握并不全面的用户数据给出推荐,并就疑难及时响应。相反,如果数据处理和响应总带有迟滞性,企业希望搜集到足够的、全面的用户数据再给予响应,就必然错过时机。
海量数据还可能包含大量看上去彼此矛盾,甚至根本就带有误导性的数据内容。《决战大数据:驾驭未来商业的利器》一书的作者是阿里巴巴集团商业智能部副总裁、数据委员会会长车品觉,他在书中描绘了消费者通过智能手机等终端购物的一种常见场景:消费者早上看到某款好看的衣服,想要购买,在网上搜出大批量的相关商品;正在挑选时,被叫去开会,在开会时打开手机应用,发现了有诱惑力的促销广告,就下单购买了另外一类商品(比如手机)。
这起场景中,消费者先后使用了手机端和PC端,如果均保持同一个用户名的登录状态,其搜索数据和最终购买数据汇集在一起显然会让许多数据分析师抓狂。如果企业要求数据分析师从这些数据挖掘、还原用户的真实需求,难度可想而知。如果这一个消费者在手机端、PC端还使用不同用户名,又该搜集哪些、多少数据,才能做到辨识其身份?
车品觉指出,“大数据的真正价值是将数据用于形成主动收集数据的良性循环,以带动更多的数据进入这个自循环中”。要做到这一点必然是困难的,上述场景非常常见,直接原因是普通消费者使用互联网具有多场景,完全可能灵活的轮换使用PC端、手机端、智能穿戴设备等终端;往深了说,移动互联网时代,很多人的注意力是高度涣散的。许多时候,用户可能长时间停留于某个页面,这并不能表明其一定是在专心停留阅读,更大的可能在于消费者这时有事走开了,或者切换到别的终端界面。因此,数据挖掘分析必须承认这种手段的相对有效性、局限性。
书中提出,数据具有5大价值:识别与串联价值(根据大数据中的核心数据对用户真实身份、真实行为进行还原)、描述价值(在特定框架内找出核心用户、紧密购买行为数据)、时间价值(在特定时间段分析历史数据)、预测价值、产出数据的价值。这其中提到的特定框架,也就是说从海量数据中根据关联性,提取核心有用数据的范围。比如一个企业要判断是否继续使用导航网站的广告,就要明确导航网站引进的新老用户比、引进的新老用户的投入产出比和转化率、推断一旦撤去广告会带来的流失影响,还要对竞争对手进行行为分析预测(对方可能加强导航广告投入),这些限定因素将使得数据提取及后续分析就不会毫无章法。
这本书第二部分对阿里巴巴的大数据实践作了基本介绍。阿里巴巴成长到今天的规模,还能继续驾驭宏大的产品线和业务范围,电商行业内外有识之士都认为这应归功于阿里巴巴能够很好的实现数据化运营,可以通过海量数据成功实现即便是细小范围内的业务对比、细分及趋势预估。车品觉分享指出,阿里巴巴数据化运营落地是从“人”做起,利用好了“混、通、晒”三板斧。“混”就是让数据分析师与业务部门的人经常“混”在一起,这是确保两大部门培养商业和数字直觉的前提;“通”就是打通“混”的数据;在此基础上,让数据得以最有效的获取、使用、分享、协同、连接和组合,就是“晒”。
车品觉认为,2011年起,阿里巴巴已经开始从数据化运营向运营数据发展,形成了良性循环,走到了运营数据的外三板斧“存、管、用”。“存”指的是搜集并存储有效数据;“管”涵盖了数据的安全管理、让数据更趋准确稳定、更好运用数据等范畴;“用”,就是要从数据本身实现分裂和重组,推动颠覆性创新。书中就此对“用”这一层次,结合作者长期以来的从业实践及对京东、一号店等其他知名电商企业运营经验的观察,展开了颇为深入的梳理剖析。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27