京公网安备 11010802034615号
经营许可证编号:京B2-20210330
栈是“后进先出”(LIFO,Last InFirst Out)的数据结构,与之相反,队列是“先进先出”(FIFO,First InFirst Out)的数据结构。
队列的作用就像售票口前的人们站成的一排一样:第一个进入队列的人将最先买到票,最后排队的人最后才能买到票。
在计算机操作系统或网路中,有各种队列在安静地工作着。打印作业在打印队列中等待打印。当敲击键盘时,也有一个存储键盘键入内容的队列,如果我们敲 击了一个键,而计算机又暂时在做其他事情,敲击的内容不会丢失,它会排在队列中等待,直到计算机有时间来读取它,利用队列保证了键入内容在处理时其顺序不 会改变。
栈的插入和删除数据项的命名方法很标准,成为push和pop,队列的方法至今也没有一个标准化的方法,插入可以称作put、add或enque等,删除可以叫作delete、get、remove或deque等。
下面我们依然使用数组作为底层容器来实现一个队列的操作封装,与栈不同的是,队列的数据项并不都是从数组的第一个下标开始,因为数据项在数组的下标越小代表其在队列中的排列越靠前,移除数据项只能从队头移除,然后队头指针后移,这样数组的前几个位置就会空出来如下图所示:
这与我们的直观感觉相反,因为我们排队买票时,队列总是向前移动,当前面的人买完票离开后,其他人都向前移动,而在我们的设计中,队列并没有向前移动,因为那样做会使效率大打折扣,我们只需要使用指针来标记队头和队尾,队列发生变化时,移动指针就可以,而数据项的位置不变。
但是,这样的设计还存在着一个问题,随着队头元素不断地移除,数组前面空出的位置会越来越多,当队尾指针移到最后的位置时,即使队列没有满,我们也不能再插入新的数据项了。
解决这种缺点的方法是环绕式处理,即让队尾指针回到数组的第一个位置:
这就是循环队列(也成为缓冲环)。虽然在存储上是线形的,但是在逻辑上它是一个首尾衔接的环形。
还有一种称为双端队列的数据结构,队列的每一端都可以进行插入和移除操作。
其实双端队列是队列和栈的综合体。如果限制双端队列的一段只能插入,而另一端只能移除,就变成了平常意义上的队列;如果限制双端队列只能在一端进行插入和移除,就变成了栈。
像普通队列一样,优先级队列有一个队头和一个队尾,并且也是从队头移除数据,从队尾插入数据,不同的是,在优先级队列中,数据项按关键字的值排序,数据项插入的时候会按照顺序插入到合适的位置。
除了可以快速访问优先级最高的数据项,优先级队列还应该可以实现相当快的插入,因此,优先级队列通常使用一种称为堆的数据结构来实现。在下例中,简便起见,我们仍然使用数组来实现
在数据项个数比较少,或不太关心速度的情况下,用数组实现优先级队列还可以满足要求,如果数据项很多,或对速度要求很高,采用堆是更好的选择
优先级队列的实现跟上面普通队列的实现有很大的区别。
优先级队列的插入本来就需要移动元素来找到应该插入的位置,所以循环队列那种不需要移动元素的优势就不太明显了。在下例中,没有设置队头和队尾指 针,而是使数组的第一个元素永远是队尾,数组的最后一个元素永远是队头,为什么不是相反的呢?因为队头有移除操作,所以将队头放在数组的末端,便于移除, 如果放在首段,每次移除队头都需要将队列向前移动。
插入元素示意图
移除元素示意图
在下例中,我们设置了一个基准点,认为元素到里基准点的距离越近则优先级越高,如设置的基准点为2,3到2的距离就是|3-2|=1,而-1到2的距离是|-1-2|=3,所以2的优先级就比-1要高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23