
栈是“后进先出”(LIFO,Last InFirst Out)的数据结构,与之相反,队列是“先进先出”(FIFO,First InFirst Out)的数据结构。
队列的作用就像售票口前的人们站成的一排一样:第一个进入队列的人将最先买到票,最后排队的人最后才能买到票。
在计算机操作系统或网路中,有各种队列在安静地工作着。打印作业在打印队列中等待打印。当敲击键盘时,也有一个存储键盘键入内容的队列,如果我们敲 击了一个键,而计算机又暂时在做其他事情,敲击的内容不会丢失,它会排在队列中等待,直到计算机有时间来读取它,利用队列保证了键入内容在处理时其顺序不 会改变。
栈的插入和删除数据项的命名方法很标准,成为push和pop,队列的方法至今也没有一个标准化的方法,插入可以称作put、add或enque等,删除可以叫作delete、get、remove或deque等。
下面我们依然使用数组作为底层容器来实现一个队列的操作封装,与栈不同的是,队列的数据项并不都是从数组的第一个下标开始,因为数据项在数组的下标越小代表其在队列中的排列越靠前,移除数据项只能从队头移除,然后队头指针后移,这样数组的前几个位置就会空出来如下图所示:
这与我们的直观感觉相反,因为我们排队买票时,队列总是向前移动,当前面的人买完票离开后,其他人都向前移动,而在我们的设计中,队列并没有向前移动,因为那样做会使效率大打折扣,我们只需要使用指针来标记队头和队尾,队列发生变化时,移动指针就可以,而数据项的位置不变。
但是,这样的设计还存在着一个问题,随着队头元素不断地移除,数组前面空出的位置会越来越多,当队尾指针移到最后的位置时,即使队列没有满,我们也不能再插入新的数据项了。
解决这种缺点的方法是环绕式处理,即让队尾指针回到数组的第一个位置:
这就是循环队列(也成为缓冲环)。虽然在存储上是线形的,但是在逻辑上它是一个首尾衔接的环形。
还有一种称为双端队列的数据结构,队列的每一端都可以进行插入和移除操作。
其实双端队列是队列和栈的综合体。如果限制双端队列的一段只能插入,而另一端只能移除,就变成了平常意义上的队列;如果限制双端队列只能在一端进行插入和移除,就变成了栈。
像普通队列一样,优先级队列有一个队头和一个队尾,并且也是从队头移除数据,从队尾插入数据,不同的是,在优先级队列中,数据项按关键字的值排序,数据项插入的时候会按照顺序插入到合适的位置。
除了可以快速访问优先级最高的数据项,优先级队列还应该可以实现相当快的插入,因此,优先级队列通常使用一种称为堆的数据结构来实现。在下例中,简便起见,我们仍然使用数组来实现
在数据项个数比较少,或不太关心速度的情况下,用数组实现优先级队列还可以满足要求,如果数据项很多,或对速度要求很高,采用堆是更好的选择
优先级队列的实现跟上面普通队列的实现有很大的区别。
优先级队列的插入本来就需要移动元素来找到应该插入的位置,所以循环队列那种不需要移动元素的优势就不太明显了。在下例中,没有设置队头和队尾指 针,而是使数组的第一个元素永远是队尾,数组的最后一个元素永远是队头,为什么不是相反的呢?因为队头有移除操作,所以将队头放在数组的末端,便于移除, 如果放在首段,每次移除队头都需要将队列向前移动。
插入元素示意图
移除元素示意图
在下例中,我们设置了一个基准点,认为元素到里基准点的距离越近则优先级越高,如设置的基准点为2,3到2的距离就是|3-2|=1,而-1到2的距离是|-1-2|=3,所以2的优先级就比-1要高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05