
大数据应用的四个战场_数据分析师
如今,当人们谈到欺诈时,可能第一个想到的是银行,事实也是如此——银行是最容易受到威胁的行业。但过去Interac Association的一份报告显示在加拿大借记卡欺诈损失实际上已经下降了62%,而且到了2013年受益于芯片和PIN技术的发展,随着一些安全性高、欺诈检测机制发展起来,可以帮助企业实时检测到欺诈行为,提升惩治犯罪机率。
对于欺诈率下降是个好消息,但是相比好消息,技术的发展不可能消除诈骗犯罪,欺诈者仍然能够利用许多其他方法从个人和企业那里谋取金钱和资产。
幸运的是,通过收集起来了大量的数据,分析这些数据能够检测出正在进行的诈骗行为,或许能够帮助公司和执法者从中找到解决方案。作为SAS加拿大安全情报实践的负责人,Dan Nagle针对目前存在四个领域,在检测欺诈行为方面对这四个领域的技术进行分析。
一、医疗卫生领域
正如分析所讲,很多人通过伪造医药处方来获取限制药物(如Oxycontin),犯罪分子通常强迫弱势人群填写相关医药处方,然后获取这些限制药物进而转售获利。
医疗卫生组织要建立一个系统,确保药房及其他一些人的行为合法,可以将正常药品购买行为和违法行为区分开。大数据系统需要审查处方内容以及购买的地点,确定在每次交易中存在欺诈的潜在可能性。并通过分析软件使用复杂的算法来发现非法活动中的一般模式,以及时对违法行为作出行动。
这一套系统为系统管理员提供了实时报警功能,帮助在监控中发现存在药品滥用的违法行为——通常从业人员(如:医生或药店),或者是病人是受到勒索被迫填假处方的受害者。
二、能源领域
能源领域中也因欺诈造成了巨额损失。非法(有些还披着“合法”的外衣)企业或组织通过各种途径从避免电费的支出,或是通过盗取其他组织的电力,或通过迂回的方式直接连接到馈电线路。
电力公司需要实时测量,了解每个客户使用电源的情况,以便可以更准确地预测需求和对电量进行调整。而面对大量的数据困扰,需要从中找到电力盗窃的证据,而他们面临的最大挑战是如何从大量数据中筛选出来进而寻找证据,而且事实上数据无法长时间保存,这意味着电力公司必须做到实时的欺诈检测。
解决方案:基于智能电表的分析系统,通过监测电力系统中不正常的表现,并将分析工具和工程系统发出的信号相结合来检测违规行为。SAS公司通过这个方案意外地发现了测定大麻生长所在位置的方法。
三、金融信用卡领域
正如开篇提到欺诈的首要行业——金融,解决信用卡和借记卡欺诈仍然需要欺诈检测技术,尽管欺诈犯罪在下降,但金融欺诈仍是一个急需解决的问题,加拿大的两大银行汇丰和Laurentian通过数据分析来解决这一难题。
汇丰银行重点是评估出每一次信用卡交易潜在的风险。拒绝一个合法用户的操作和允许非法交易都是系统所不想得到的效果,因此数据分析需要很高的可靠性和实时性,避免客户合法交易被阻止转向其他家银行的尴尬。
另一个案例,Laurentian系统则致力于利用数据挖掘出周期性诈骗行为(如:洗钱)。为了做到这一点,Laurentian将欺诈检测与其他系统整合到一起,了解每一个客户交易的详细信息、用户之间的关联等信息,无论资金流动情况如何复杂,银行都能通过分析来确定交易是否合法。
四、赌博业
看过Oceans 11(十一罗汉)电影会感受到在线和离线的赌场相对于金融企业存在着更多的欺诈风险,诈骗者侵入合法玩家的账户,通过侵入这些账户进行盗窃或洗钱等违法行为。由此,分析系统为每个赌徒建立了相应的信息文档,可以实时了解信息,甚至指纹信息。在出现异样时候,该系统就可以立即向赌场发出警报。
可见,大数据分析系统对欺诈行为进行积极主动的打击区别于传统方法,传统方法只能在欺诈发生后,依靠取证来打击犯罪。随着网络犯罪的增长,未来通过大数据分析预测犯罪、制止犯罪将成为重要的发展趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29