
大数据应用的四个战场_数据分析师
如今,当人们谈到欺诈时,可能第一个想到的是银行,事实也是如此——银行是最容易受到威胁的行业。但过去Interac Association的一份报告显示在加拿大借记卡欺诈损失实际上已经下降了62%,而且到了2013年受益于芯片和PIN技术的发展,随着一些安全性高、欺诈检测机制发展起来,可以帮助企业实时检测到欺诈行为,提升惩治犯罪机率。
对于欺诈率下降是个好消息,但是相比好消息,技术的发展不可能消除诈骗犯罪,欺诈者仍然能够利用许多其他方法从个人和企业那里谋取金钱和资产。
幸运的是,通过收集起来了大量的数据,分析这些数据能够检测出正在进行的诈骗行为,或许能够帮助公司和执法者从中找到解决方案。作为SAS加拿大安全情报实践的负责人,Dan Nagle针对目前存在四个领域,在检测欺诈行为方面对这四个领域的技术进行分析。
一、医疗卫生领域
正如分析所讲,很多人通过伪造医药处方来获取限制药物(如Oxycontin),犯罪分子通常强迫弱势人群填写相关医药处方,然后获取这些限制药物进而转售获利。
医疗卫生组织要建立一个系统,确保药房及其他一些人的行为合法,可以将正常药品购买行为和违法行为区分开。大数据系统需要审查处方内容以及购买的地点,确定在每次交易中存在欺诈的潜在可能性。并通过分析软件使用复杂的算法来发现非法活动中的一般模式,以及时对违法行为作出行动。
这一套系统为系统管理员提供了实时报警功能,帮助在监控中发现存在药品滥用的违法行为——通常从业人员(如:医生或药店),或者是病人是受到勒索被迫填假处方的受害者。
二、能源领域
能源领域中也因欺诈造成了巨额损失。非法(有些还披着“合法”的外衣)企业或组织通过各种途径从避免电费的支出,或是通过盗取其他组织的电力,或通过迂回的方式直接连接到馈电线路。
电力公司需要实时测量,了解每个客户使用电源的情况,以便可以更准确地预测需求和对电量进行调整。而面对大量的数据困扰,需要从中找到电力盗窃的证据,而他们面临的最大挑战是如何从大量数据中筛选出来进而寻找证据,而且事实上数据无法长时间保存,这意味着电力公司必须做到实时的欺诈检测。
解决方案:基于智能电表的分析系统,通过监测电力系统中不正常的表现,并将分析工具和工程系统发出的信号相结合来检测违规行为。SAS公司通过这个方案意外地发现了测定大麻生长所在位置的方法。
三、金融信用卡领域
正如开篇提到欺诈的首要行业——金融,解决信用卡和借记卡欺诈仍然需要欺诈检测技术,尽管欺诈犯罪在下降,但金融欺诈仍是一个急需解决的问题,加拿大的两大银行汇丰和Laurentian通过数据分析来解决这一难题。
汇丰银行重点是评估出每一次信用卡交易潜在的风险。拒绝一个合法用户的操作和允许非法交易都是系统所不想得到的效果,因此数据分析需要很高的可靠性和实时性,避免客户合法交易被阻止转向其他家银行的尴尬。
另一个案例,Laurentian系统则致力于利用数据挖掘出周期性诈骗行为(如:洗钱)。为了做到这一点,Laurentian将欺诈检测与其他系统整合到一起,了解每一个客户交易的详细信息、用户之间的关联等信息,无论资金流动情况如何复杂,银行都能通过分析来确定交易是否合法。
四、赌博业
看过Oceans 11(十一罗汉)电影会感受到在线和离线的赌场相对于金融企业存在着更多的欺诈风险,诈骗者侵入合法玩家的账户,通过侵入这些账户进行盗窃或洗钱等违法行为。由此,分析系统为每个赌徒建立了相应的信息文档,可以实时了解信息,甚至指纹信息。在出现异样时候,该系统就可以立即向赌场发出警报。
可见,大数据分析系统对欺诈行为进行积极主动的打击区别于传统方法,传统方法只能在欺诈发生后,依靠取证来打击犯罪。随着网络犯罪的增长,未来通过大数据分析预测犯罪、制止犯罪将成为重要的发展趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04