京公网安备 11010802034615号
经营许可证编号:京B2-20210330
比较现代的分类算法:决策树和神经网络。这两个算法都来源于人工智能和机器学习学科。
首先和小伙伴介绍下数据挖掘领域比较经典的Knn(nearest neighbor)算法(最近邻算法)
算法基本思想:
Step1:计算出待测样本与学习集中所有点的距离(欧式距离或马氏距离),按距离大小排序,选择出距离最近的K个学习点;
Step2:统计被筛选出来的K个学习点,看他们在分类中的分布,频数最大的分类及为待测点的分类;
该算法主要来源于人工智能,常用语博弈论,基本逻辑如下图(解释女网友见男网友的决策过程)。决策数学习集的属性可以是非连续的,可以是因子,也可 以逻辑是非等。决策过程中需要找到信息增益最大的属性作为根节点,然后逐级找出信息增益次小的属性,作为下一层决策点,逐级按照信息增益排列的所有属性, 即可做出决策树。目前用的最多的ID3和其后续升级版。
现在我们来看看如何用R帮我们做决策树分析,我们借助鸢尾花数据集来做,同时我们需要导入rpart包来做决策树分析:
结果如下图:
ANN(Artificial NeuralNetWorks)
通过学习集构造出一个模型(感知器:如下图),图中0.3即为该分支的权值,0.4为偏置因子(t), sum求和为本例的激活函数(也可是其他函数:三角,指数等),人工神经网络也就是通过学习集来修正权值,通过负反馈过程进行,具体算法如下:
显示的问题往往比较复杂,需要构造多层神经网络如下图:
接下来给小伙伴们分享下R语言如何实现人工神经网络分析,我们需要安装AMORE包,我们就解决上文提到的3个变量分类y 的案例:
输出结果见下图:
其中Z看符号变可区分,对比Z 和Y,发现神经网络得出的结果和目标值100%吻合。
由此,我们可以看出人工神经网络的强大魅力,我们可以不用去弄明白内部具体算法原理,我们只需要确定输入输出和设置相应的节点便可以轻松完成分类。对于隐藏层个数设置我们需要做一定的分析,并非隐藏层数越多,模型越精确,原因有两个:
1、 对于问题规模不那么复杂时,较多的隐藏层会浪费我们过多没有必要的时间;
2、 隐藏层越多确实可以给我们带来更好的拟合效果,但需要注意的是,对学习集的过度拟合会造成预测时的巨大误差。
神经网络的黑箱性是把双刃剑,一方面黑箱给我们带来很大的方便;但另一方面黑箱的隐藏性让我们无法把控,得出的模型无法和业务结合做解释,因此神经网络需要新的思路来重构算法,Hopfield神经网络的出现就解决了早期神经网络的黑箱性和过度拟合等缺点。
本文来自:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19