数据分析方法论:有对比才有效果 处于大数据时代,如果只是一味埋头苦干,无法在大环境里站住脚跟,只有拥有大局观,才能让自己的电商之路走的更远,这种时候,学会 数据分析 对比法显得尤为重要。 ...
2015-11-26北上广深不相信眼泪 大都市上班族行为数据分析 曾经,“逃离北上广”成为年轻人中一个口号式的选择,但是,这个口号根本就没喊上多久,就没人响应了,因为,“逃离北上广”的人又都回来了。只有“北上广 ...
2015-11-26R语言实现常用的5种分析方法(主成分+因子+多维标度+判别+聚类) R语言多元分析系列之一:主成分分析 主成分分析(principal components analysis, PCA)是一种分析、简化数据集的技术。它把原 ...
2015-11-2616个你绝不知道的Python神奇技能 文 | Andrew Liu 显示有限的接口到外部 当发布python第三方package时, 并不希望代码中所有的函数或者class可以被外部import, 在__init__.py中添加__all__属性 ...
2015-11-26大数据在未来将进一步体现价值 日常生活中,能够制造出数据的领域遍布各个行业,商务贸易、在线视频图像资料、社交网络媒体信息、企业信息管理以及电子政务等等,都会涉及到大数据。 而在过去的 ...
2015-11-26未来零售商如何通过大数据圈住消费者 现在的零售商都知道大数据对于他们商业运作的意义,例如可以分析消费者的大数据为他们量身定制服务,满足他们个性化需求。想象一下,当一位顾客踏进百货店大门的一 ...
2015-11-26小商家的大数据 这几年关于“C2B”和“大数据”的说法越来越多,大部分皇冠卖家已经知道了“从客户出发做选择”的重要性,知道了“数据驱动”的重要性。以至于不少皇冠卖家都有了自己专门的“数据研究” ...
2015-11-26企业大数据实战案例 一、家电行业 以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运 ...
2015-11-26如何将数据转化为收益:3步激活数据法! 虽然我们身处数字化时代,可作为营销者,稍稍审视一下,我们也不得不承认,数据分析仍是一个朝阳产业。 如果你像大多数机构一样,这意味着尽管你要收集比 ...
2015-11-25用R语言进行数据分析:一个简单的会话 下面的会话让你在操作中对 R 环境的一些特性有个简单的了解。你对系统的许多特性开始时可能 有点不熟悉和困惑,但这些迷惑会很快 消失的。 登录,启动你的 ...
2015-11-25什么是大数据?先了解三个概念:数据沉淀、数据挖掘和数据呈现 大数据咱听的够多了,百度一下,就“为您找到相关结果约7,150,000个”,可它到底是个什么东西,解读甚多,眼花缭乱的没个准。本文整 ...
2015-11-25如何从一开始就设计好数据分析的基本框架 下面这篇文章中向我们讲解创业者们如何可以从一开始就设计好数据分析的基本框架:将数据储存于何处?用什么工具分析最好?可以规避哪些常见的错误?以及,今天 ...
2015-11-25用R语言进行数据分析:命令行编辑器 C.1 预备工作 如果你的 UNIX 系统已经安装了GNUreadline库, 那么 R 配置中允许在 UNIX 下编译 R 代码,调用内置的 命令行编辑器,编辑和重新调用以前用过的 ...
2015-11-25用R语言进行数据分析:常用函数参考 基本 一、数据管理 vector:向量numeric:数值型向量logical:逻辑型向量character;字符型向量list:列表data.frame:数据框c:连接为向量或列表length:求长度subse ...
2015-11-25网站常用的数据分析方法介绍 本篇文章我们介绍4种网站分析中最常用,也是最有效的分析方法。他们分别是细分分析,对比分析,对比分析,质与量分析。这些分析方法在实际工作中经常组合使用。我们先来看 ...
2015-11-257大板块组成数据分析师的完整知识结构 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构 ...
2015-11-25数据分析:中国生物识别技术市场预测 据立木信息咨询发布的《中国生物识别技术市场预测与投资方向研究报告(2016版)》显示:2009年全球识别产业收入为34.22亿美元,2014年这一数值达到93.68亿美元。作为21 ...
2015-11-25R语言数据可视化综合指南 编译|崔浩 校对|高航,姚佳灵 让我们快速浏览一下这张图表: 这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例 ...
2015-11-24用SAS进行随机抽样的5种方式 文 | 郑来轶 在构建数据挖掘模型过程中,有时我们无法对所有的整体进行全面研究,有时我们希望将整体划分为训练集、验证集、测试集三份用于不同目的的数据集,甚至在K-折 ...
2015-11-24数据分析与网络营销存在什么样的关系 信息互联网的日新月异给人们的生活带来了巨大的变化,人们在网络上可以做很多的事情,比如网络营销、电子商务、网络投放广告等。网络营销现今是主流市场的一种重要 ...
2015-11-24在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29