
16个你绝不知道的Python神奇技能
文 | Andrew Liu
显示有限的接口到外部
当发布python第三方package时, 并不希望代码中所有的函数或者class可以被外部import, 在__init__.py中添加__all__属性,
该list中填写可以import的类或者函数名, 可以起到限制的import的作用, 防止外部import其他函数或者类
with的魔力
with语句需要支持上下文管理协议的对象, 上下文管理协议包含__enter__和__exit__两个方法. with语句建立运行时上下文需要通过这两个方法执行进入和退出操作.
其中上下文表达式是跟在with之后的表达式, 该表示大返回一个上下文管理对象
详细原理可以查看这篇文章, 浅谈 Python 的 with 语句
知道具体原理, 我们可以自定义支持上下文管理协议的类, 类中实现__enter__和__exit__方法
执行结果如下:
证明了会先执行__enter__方法, 然后调用with内的逻辑, 最后执行__exit__做退出处理, 并且, 即使出现异常也能正常退出
filter的用法
相对filter而言, map和reduce使用的会更频繁一些, filter正如其名字, 按照某种规则过滤掉一些元素
一行作判断
当条件满足时, 返回的为等号后面的变量, 否则返回else后语句
装饰器之单例
使用装饰器实现简单的单例模式
staticmethod装饰器
·
类中两种常用的装饰, 首先区分一下他们
·
·
普通成员函数, 其中第一个隐式参数为对象
·
·
classmethod装饰器, 类方法(给人感觉非常类似于OC中的类方法), 其中第一个隐式参数为类
·
·
staticmethod装饰器, 没有任何隐式参数. python中的静态方法类似与C++中的静态方法
·
property装饰器
定义私有类属性
将property与装饰器结合实现属性私有化(更简单安全的实现get和set方法)
fget是获取属性的值的函数,fset是设置属性值的函数,fdel是删除属性的函数,doc是一个字符串(like a comment).从实现来看,这些参数都是可选的
property有三个方法getter(), setter()和delete() 来指定fget, fset和fdel。 这表示以下这行
iter魔法
通过yield和__iter__的结合, 我们可以把一个对象变成可迭代的
通过__str__的重写, 可以直接通过想要的形式打印对象
神奇partial
partial使用上很像C++中仿函数(函数对象).
在stackoverflow给出了类似与partial的运行方式
利用用闭包的特性绑定预先绑定一些函数参数, 返回一个可调用的变量, 直到真正的调用执行
神秘eval
eval我理解为一种内嵌的python解释器(这种解释可能会有偏差), 会解释字符串为对应的代码并执行, 并且将执行结果返回
看一下下面这个例子
exec
·
exec在Python中会忽略返回值, 总是返回None, eval会返回执行代码或语句的返回值
·
·
exec和eval在执行代码时, 除了返回值其他行为都相同
·
·
在传入字符串时, 会使用compile(source, '<string>', mode)编译字节码. mode的取值为exec和eval
·
getattr
getattr(object, name[, default])Return the value of the named attribute of object. name must be a string. If the string is the name of one of the object’s attributes, the result is the value of that attribute. For example, getattr(x, ‘foobar’) is equivalent to x.foobar. If the named attribute does not exist, default is returned if provided, otherwise AttributeError is raised.
通过string类型的name, 返回对象的name属性(方法)对应的值, 如果属性不存在, 则返回默认值, 相当于object.name
命令行处理
读写csv文件
各种时间形式转换
只发一张网上的图, 然后差文档就好了, 这个是记不住的
字符串格式化
一个非常好用, 很多人又不知道的功能
来自:http://andrewliu.in/2015/11/14/Python%E5%A5%87%E6%8A%80%E6%B7%AB%E5%B7%A7/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04