
用R语言进行数据分析:一个简单的会话
下面的会话让你在操作中对 R 环境的一些特性有个简单的了解。你对系统的许多特性开始时可能 有点不熟悉和困惑,但这些迷惑会很快 消失的。
登录,启动你的桌面系统。$ R以适当的方式启动 R。R 程序开始,并且有一段引导语。
(在 R 里面,左边的提示符将不会被显示防止 混淆。)
help.start()启动 HTML 形式的在线帮助(使用你的计算机里面 可用的浏览器)。你可以用鼠标 点击上面的链接。最小化帮助窗口,进入下一部分。x <- rnorm(50)y <- rnorm(x)产生两个伪正态随机数向量 x 和 y。plot(x, y)画二维散点图。一个图形窗口会自动出现。ls()查看当前工作空间里面的 R 对象。rm(x, y)去掉不再需要的对象。(清空)。x <- 1:20等价于 x = (1, 2, …, 20)。w <- 1 + sqrt(x)/2标准差的`权重’向量。dummy <- data.frame(x=x, y= x + rnorm(x)*w)dummy创建一个由x 和 y构成的双列数据框, 查看它们。fm <- lm(y ~ x, data=dummy)summary(fm)拟合 y 对 x 的简单线性回归,查看 分析结果。fm1 <- lm(y ~ x, data=dummy, weight=1/w^2)summary(fm1)现在我们已经知道标准差,做一个加权回归。attach(dummy)让数据框中的列项可以像一般的变量那样使用。lrf <- lowess(x, y)做一个非参局部回归。plot(x, y)标准散点图。lines(x, lrf$y)增加局部回归曲线。abline(0, 1, lty=3)真正的回归曲线:(截距 0,斜率 1)。abline(coef(fm))无权重回归曲线。abline(coef(fm1), col = "red")加权回归曲线。detach()将数据框从搜索路径中去除。plot(fitted(fm), resid(fm), xlab="Fitted values", ylab="Residuals", main="Residuals vs Fitted")一个检验异方差性(heteroscedasticity)的标准回归诊断图。 你可以看见吗?qqnorm(resid(fm), main="Residuals Rankit Plot")用正态分值图检验数据的偏度(skewness),峰度(kurtosis)和异常值(outlier)。 (这里没有多大的用途,只是演示一下而已。)rm(fm, fm1, lrf, x, dummy)再次清空。
第二部分将研究 Michaelson 和 Morley 测量光速的经典实验。这个数据集可以 从对象 morley 中得到,但是我们从中读出数据以演示 函数 read.table 的作用。
filepath <- system.file("data", "morley.tab" , package="datasets")filepath得到文件路径。file.show(filepath)可选。查看文件内容。mm <- read.table(filepath)mm以数据框的形式读取 Michaelson 和 Morley 的数据,并且查看。 数据由五次实验(Expt 列),每次运行 20 次 (Run列)的观测得到。数据框中的 sl 是光速的记录。 这些数据以适当形式编码。mm$Expt <- factor(mm$Expt)mm$Run <- factor(mm$Run)将 Expt 和 Run 改为因子。attach(mm)让数据在位置 3 (默认) 可见(即可以直接访问)。plot(Expt, Speed, main="Speed of Light Data", xlab="Experiment No.")用简单的盒状图比较五次实验。fm <- aov(Speed ~ Run + Expt, data=mm)summary(fm)分析随机区组,`runs’ 和 `experiments’ 作为因子。fm0 <- update(fm, . ~ . - Run)anova(fm0, fm)拟合忽略 `runs’ 的子模型,并且对模型更改前后 进行方差分析。detach()rm(fm, fm0)在进行下面工作前,清空数据。
我们现在查看更有趣的图形显示特性:等高线和影像显示。
x <- seq(-pi, pi, len=50)y <- xx 是一个在 区间 [-pi\, pi] 内等间距的50个元素的向量, y 类似。f <- outer(x, y, function(x, y) cos(y)/(1 + x^2))f 是一个方阵,行列分别被 x 和 y 索引,对应的值是函数 cos(y)/(1 + x^2) 的结果。oldpar <- par(no.readonly = TRUE)par(pty="s")保存图形参数,设定图形区域为“正方形”。contour(x, y, f)contour(x, y, f, nlevels=15, add=TRUE)绘制 f 的等高线;增加一些曲线显示细节。fa <- (f-t(f))/2fa 是 f 的“非对称部分”(t() 是转置 函数)。contour(x, y, fa, nlevels=15)画等高线,…par(oldpar)… 恢复原始的图形参数。image(x, y, f)image(x, y, fa)绘制一些高密度的影像显示,(如果你想要,你可以保存 它的硬拷贝), …objects(); rm(x, y, f, fa)… 在继续下一步前,清空数据。
R 可以做复数运算。
th <- seq(-pi, pi, len=100)z <- exp(1i*th)1i 表示复数 i。par(pty="s")plot(z, type="l")图形参数是复数时,表示虚部对实部画图。这可能是 一个圆。w <- rnorm(100) + rnorm(100)*1i假定我们想在这个圆里面随机抽样。一种方法 将让复数的虚部和实部值是标准正态随机 数 …w <- ifelse(Mod(w) > 1, 1/w, w)… 将圆外的点映射成它们的倒数。plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+",xlab="x", ylab="y")lines(z)所有的点都在圆中,但分布不是 均匀的。w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i)plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+", xlab="x", ylab="y")lines(z)第二种方法采用均匀分布。现在圆盘中的点 看上去均匀多了。rm(th, w, z)再次清空。q()离开 R 程序。你可能被提示是否保存 R 工作空间, 不过对于一个调试性的会话,你可能不想 保存它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18