京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言进行数据分析:命令行编辑器
如果你的 UNIX 系统已经安装了 GNU readline 库, 那么 R 配置中允许在 UNIX 下编译 R 代码,调用内置的 命令行编辑器,编辑和重新调用以前用过的命令。 注意:该附录提到的接口不是用于 UNIX 系统的 GNOME接口,而仅仅用于标准的命令行 接口。
如果启动时设置了参数 –no-readline (使用 ESS 时非常有用), 则该命令不可用。
Windows 版本的 R 有简单的命令行编辑功能; 见 GUI 界面的 Help 菜单下的 Console,已经 描述 Rterm.exe 的命令行操作的 文件 README.Rterm。
当使用 readline 写 R 命令时,下面 描述的函数可用。
这些函数常常是控制字符或者是元字符(Meta character)。控制字符,如 Control-m 表示同时按住 <CTRL> 和 <m> 键,并且以 C-m 形式表示。元字符,如 Meta-b 表示同时按住 <META>和 <b> 键,下面以 M-b 形式记录。如果你的终端没有 <META> 键,你可以用ESC 开始的两个字符序列 键入元字符。因此对于 M-b,你可以键入 <ESC><b>。ESC 字符序列在 有真正元键的终端也是允许的。注意这种情况 对元字符有特殊意义的。
R 保存你键入的命令行的历史, 包括错误的命令。历史文件中的命令可以被重新调用,修改 以新的命令的形式重新提交。在 Emacs-形式的命令行编辑中,任何直接的输入 都会将字符直接插入到你所编辑的命令中, 并且取代光标右侧的字符。 vi 输入模式是通过 M-i 或 M-a 启动,字符可以被键入并且通过键入 <ESC> 结束输入模式。
任何时候键入 <RET> 都会使得命令 重新被提交。
其他的编辑命令在下面的表中有所总结。
C-p跳到前一个命令(回溯历史文件)。C-n跳到下一个命令(前溯历史文件)。C-r text搜索含有字符串 text 的最后一个命令。
在大多数终端,你可以使用上下键分别代替 C-p 和 C-n。
C-a回到命令行开头。C-e跳到命令行结束。M-b回溯一个单词。M-f前溯一个单词。C-b回溯一个字符。C-f前溯一个字符。
在大多数终端,你可以使用左右键分别代替 C-b 和 C-f。
text在光标处插入文本 text。C-f text在光标后插入 text。<DEL>删除前面的字符(光标左侧)。C-d删除光标处的字符。M-d删除光标处单词以外的部分,并且“保存”它们。C-k删除光标到命令结束的部分,并且“保存”它们。C-y插入最后“保存”的文本。C-t转置光标处的文本。M-l将字符转换成小写字符。M-c将单词转换成大写。<RET>重新向 R 提交命令。
最后的 <RET> 命令将会终止命令行编辑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16