构建机器学习系统的20个经验教训 数据科学家对优化算法和模型以进一步发掘数据价值的追求永无止境。在这个过程中他们不仅需要总结前人的经验教训,还需要有自己的理解与见地,虽然后者取决于人的灵动性,但是 ...
2016-01-05发现假数据科学家的20个问题 现在,数据科学家是21世纪最性感的职业,每个人都希望分一块蛋糕。 这表示会有一些装腔作势的数据人士。这些人称自己为数据科学家,但他们并不掌握对应的技能。 这个问题的 ...
2016-01-05
数据挖掘在电子商务的应用:如何选择商品关键词? 对平台上的卖家来说,如何给宝贝取标题、选择关键词投放对于获取站内站外的搜索流量来说都至关重要,而对于独立B2C来说,在显示搜索结果时,除了根据商品关键 ...
2016-01-05
淘宝数据产品技术架构分析 淘宝网拥有国内最具商业价值的海量数据。截至当前,每天有超过30亿的店铺、商品浏览记录,10亿在线商品数,上千万的成交、收藏和评价数据。如何从这些数据中挖掘出真正的商业价值, ...
2016-01-05什么是物流大数据挖掘思路 什么是物流大数据挖掘思路,物流大数据,都是哪些数据? 物流大数据主要包括运单信息的数据和车辆信息的数据,然而关于运单信息往往涉及商业机密,并且信息分布于不同行业企业内部 ...
2016-01-04数据挖掘中最易栽10大大坑 按照总结,这10大易犯错误包括: 0、缺乏数据(Lack Data) 1. 太关注训练(Focus on Training) 2. 只依赖一项技术(Rely on One Technique) ...
2016-01-04从小数据到大数据分析应用 数据整理是数据分析过程中最重要的环节,在大数据分析过程中也是如此。在小数据时代,数据整理包括数据的清洗、数据转换、归类编码和数字编码等过程,其中数据清洗占据最重要的位置 ...
2016-01-04如何提高数据分析的效率 数据分析的目的是把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出研究对象的内在规律。面对海量数据时,提高数据分析的效率成为困扰分析师的难题。 一、明 ...
2016-01-04三大技术推动大数据分析平台的发展 在互联网技术横行的时代,数据即价值,数据即资源。大数据分析工具的职责就是规整数据,挖掘价值。因此,大数据分析平台的发展在一定程度上代表着大数据的发展。而在现阶段 ...
2016-01-04进行大数据分析 需选择合适技术 对于企业而言,大数据不仅是个热门话题,更是真切的需求所在。许多企业开始着手于大数据分析项目,但是现在,越来越多的企业存储的信息量就算不是PB级,起码也有TB量级…… ...
2016-01-04
大数据的最后一公里—数据可视化的价值 今年以来,大数据是整个IT领域非常热门的话题,特别是阿里巴巴的马云提出 “人类正从IT时代走向DT时代”,把大数据推向了风口浪尖。然而对于大部分企业来说,往往是空 ...
2016-01-04深入探讨数据仓库建模与ETL的实践技巧 深入探讨了搭建数据仓库过程中应当遵循的方法和原则,更多内容请参考下文: 一、数据仓库的架构 数据仓库(Data Warehouse \\ DW)是为了便于多维分析和多角度展现 ...
2016-01-04全面解析基于空间数据库的数据挖掘技术 随着GIS技术在各个行业的应用以及数据挖掘、空间数据采集技术、数据库技术的迅速发展,对从空间数据库发现隐含知识的需求日益增长,从而出现了用于在空间数据库中进行知 ...
2016-01-04Excel在.Net下驻留内存的解决方法 这段时间在VS 2003 的WebForm 方式下对Excel 进行操作,遇到一个最为头疼的问题就是对Excel操作完毕后Excel不能够正常关闭,系统退出后,Excel总是驻留在内存中。但是这段代 ...
2016-01-03网站细分分析的10个要点 作为艺术与技术结合的网站分析师,不能仅依靠关键指标或者依赖于一个很炫的仪表盘。而真正的价值体现在于不断的细分网站用户,从而更好的分析用户,为他们提供个性化的服务进而实现其 ...
2016-01-03如何让数据分析产生价值得到业务方认可 很多朋友都反映说,在我的公司根本就不重视数据,数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公 ...
2016-01-03数据分析教程(2):怎么用数据 之前写过一篇文章数据是个好东西之一怎么看数据,后面拿给几个朋友看一下,大家都觉得写得不错,再接再厉。后面又跟朋友聊开了,光知道怎么看数据,还是不成,你得熟悉这些数据 ...
2016-01-03
数据分析教程(1):如何看懂数据分析? 现在说分析数据,好像已经成了互联网那个从业者的口头禅,做产品的,运营的,市场的口口声声都在说数据怎么样,但是了解数据的真正含义,读懂数据的人确实不多。之前跟一个 ...
2016-01-03
网站分析的数据来源 Avinash Kaushik在他的《Web Analytics》一书中将数据的来源分为4部分:点击流数据(Clickstream)、运营数据(Outcomes)、调研数据(Research/Qualitative)和竞争对手数据(Competitive ...
2016-01-03
20条关于数学及数据分析的冷笑话 1、“我是搞数据分析的,学会了如何从DW中用SQL对数据ETL并建立了Cube。然后算啊算啊算,得出结论:今年2月份营业收入远远小于其它月份。我试图用spss、sas中的数据挖掘模型找 ...
2016-01-03当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24