京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三大技术推动大数据分析平台的发展
在互联网技术横行的时代,数据即价值,数据即资源。大数据分析工具的职责就是规整数据,挖掘价值。因此,大数据分析平台的发展在一定程度上代表着大数据的发展。而在现阶段,云存储技术、感知技术、数据可视化技术成为大数据应用技术中不可或缺的组成部分。
云存储技术
大数据可以抽象的分为大数据存储和大数据分析,这两者的关系是:大数据存储的目的是支撑大数据分析。大数据存储致力于研发可以扩展至PB甚至EB级别的大数据分析平台;大数据分析关注在最短时间内处理大量不同类型的数据集。
根据著名的“摩尔定律”,18个月集成电路的复杂性就增加一倍。所以,存储器的成本大约每18-24个月就下降一半。这意味着云存储技术的潜力巨大,同时对于大数据分析平台而言意味着更大的数据存储量和功能更强的线上大数据分析平台。如国云数据开发的大数据魔镜云平台版本,实用且免费的设定让其迅速在中国数据市场占据了重要的一席。
数据抓取技术
现在大多数的大数据分析平台的数据抓取功能还停留在对固定数据库的数据处理和整合上。但是随着互联网技术的应用拓展,直接从互联网甚至是行为个体上直接抓取数据并非是不可能的,在技术上也是可行的。
大数据的采集和数据抓取技术的发展是紧密联系的。以传感器技术,指纹识别技术,RFID技术,坐标定位技术等为基础的感知能力提升同样是物联网发展的基石。而随着智能手机的普及,感知技术可谓迎来了发展的高峰期。大数据分析平台未来极有可能整合数据抓取技术,变被动分析为主动寻找,从而迈上大数据分析技术发展的新高峰。
数据可视化技术
数据可视化技术是当下最热门的大数据应用数据,除了末端展示的需要,数据可视化也是数据分析时不可或缺的一部分,即返回数据时的二次分析。而数据可视化也利于大数据分析平台的学习功能建设,让没有技术背景和初学者也能很快掌握大数据分析平台的操作。
未来的大数据分析平台的承载平台也不可能固定在某一类平台,但是无论哪一类平台,数据分析和分析结果的末端展示都离不开数据可视化技术。其实与其说数据可视化技术是大数据应用技术发展的需要,不如说数据可视化技术简化了数据分析技术,从而让更多人可以走进大数据,使用大数据。
在大数据应用技术发展的历程中,还有许多技术伴随左右,但都没有以上者三大技术重要,因为它们直接勾勒了大数据分析平台的未来甚至是人类的未来。而绝知此事要躬行,要想了解大数据,还是要亲自参与,操作一些类似于大数据魔镜这样的新锐大数据分析平台,无论体验如何,你终将会从中学到很多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06