京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站分析的数据来源
Avinash Kaushik在他的《Web Analytics》一书中将数据的来源分为4部分:点击流数据(Clickstream)、运营数据(Outcomes)、调研数据(Research/Qualitative)和竞争对手数据(Competitive Data)。点击流数据主要指的是用户浏览网站时产生的数据;Outcomes我更习惯叫做运营数据,主要指用户在网站中应用服务或者购买产品时记录下来的数据;调研数据主要是网站通过某些用户调研手段(线上问卷或者线下调研)获取的一些定性数据;Competitive Data直译为竞争对手数据可能不太合适,因为根据Avinash Kaushik的阐述,更像是跟网站有业务关系或竞争关系或存在某种利益影响的一切网站的可能的数据来源。
在获取上述几类数据的同时,也许我们还可以从其他方面获取一些更为丰富的数据。下面是我对网站分析数据获取途径的整理:
网站内部数据
网站内部数据是网站最容易获取到的数据,它们往往就存放在网站的文件系统或数据库中,也是与网站本身最为密切相关的数据,是网站分析最常见的数据来源,我们需要好好利用这部分数据。
服务器日志
随着网站应用的不断扩张,网站日志不再局限于点击流的日志数据,如果你的网站提供上传下载、视频音乐、网页游戏等服务,那么很明显,你的网站服务器产生的绝不仅有用户浏览点击网页的日志,也不只有标准的apache日志格式日志,更多的W3C、JSON或自定义格式的输出日志也给网站分析提供了新的方向。
网站分析不再局限于网页浏览的PV、UV,转化流失等,基于事件(Events)的分析将会越来越普遍,将会更多的关注用户在接受网站服务的整个流程的情况:上传下载是否完成,速度如何;用户是否观看的整部视频,视频的加载情况;及用户在玩网页游戏时的操作和体验分析等。Google Analytics已经支持了基于事件的分析——Event Tracking,通过JS的动作响应获取数据,但是还存在着一定的局限性。
网站分析工具
当然,通过网站分析工具获得数据是一个最为简便快捷的方式,从原先的基于网站日志的AWStats、webalizer,到目前非常流行的基于JS Tags的Google Analytics、Omniture的SiteCatalyst,及JS和网站日志通吃的WebTrends。通过网站分析工具获得的数据一般都已经经过特殊计算,较为规范,如PV、UV、Exit Rate、Bounce Rate等,再配上一些趋势图或比例图,通过细分、排序等方法让结果更为直观。
但通过网站分析工具得到数据也不远只这些,上面的这些数据也一样可以通过统计网站日志获得,但网站分析工具的优势在于其能通过一些嵌入页面的JS代码获得一些有趣的结果,如Google Analytics上的Overlay或者也叫Click Density——网站点击密度分布,及一些其它的网站分析工具提供的点击热图,甚至鼠标移动轨迹图。这些分析结果往往对网站优化和用户行为分析更为有效。
数据库数据
对于一般的网站来说,存放于数据库中的数据可以大致分为3个部分:
网站用户信息,一般提供注册服务的网站都会将用户的注册账号和填写的基本信息存放在数据库里面;
网站应用或产品数据,就像电子商务的商品详细信息或者博客的文章信息,如商品信息会包含商品名称、库存数量、价格、特征描述等;
用户在应用服务或购买产品时产生的数据,最简单的例子就是博客上用户的评论和电子商务网站的用户购买数据,购买时间、购买的用户、购买的商品、购买数量、支付的金额等。
当然,这一部分数据的具体形式会根据网站的运营模式存在较大差异,一些业务范围很广,提供多样服务的网站其数据库中数据的组合会相当复杂。
其它
其它一切网站运营过程中产生的数据,有可能是用户创造,也有可能是网站内部创造,其中有一大部分我们可以称其为“线下数据(Offline Data)”。如用户的反馈和抱怨,可能通过网站的交流论坛,也有可能通过网站时公布的客服电话、即时通讯工具等,如果你相信“客户中心论”,那么显然对于这些数据的分析必不可少;另外一部分来源就是网站开展的线下活动,促销或推广,衡量它们开展的效果或投入产出,以便于之后更好地开展类似的线下推广。
外部数据
网站分析除了可以从网站内部获取数据以外,通过互联网这个开放的环境,从网站外部捕获一些数据可以让分析的结果更加全面。
互联网环境数据
即使你的网站只是一个很小的网站,但如果想让你的网站变得更好,或者不至于落后于互联网的前进脚步,那么建议你关注一下互联网的发展趋势。可以上Alexa查一下互联网中顶级网站的访问量趋势;看看comScore发布的数据或者199IT–中国互联网数据中心网站上的各种数据分析和研究资料;如果经营电子商务网站,淘宝数据中心也许会让你感兴趣。
竞争对手数据
时刻关注竞争对手的情况可以让你的网站不至于在竞争中落伍。除了在Alexa及一些其他的网站数据查询平台以外,直接从竞争对手网站上获取数据也是另外一条有效的途径,一般网站会出于某些原因(信息透明、数据展示等)将自己的部分统计信息展现在网站上,看看那些数据对于掌握你的竞争对手的情况是否有帮助。
合作伙伴数据
如果你有合作的网站或者你经营的是一个电子商务网站,也许你会有相关的产品提供商、物流供应商等合作伙伴,看看他们能为你提供些什么数据。
用户数据
尝试跟踪用户的脚步去看看他们是怎么评价你的网站的。如果你的网站已经小有名气,那么尝试在搜索引擎看看用户是怎么评价你的网站,或者通过Twitter、新浪微博等看看用户正在上面发表什么关于你的网站的言论。
当然通过用户调研获取数据是另外一个不错的途径,通过网站上的调查问卷或者线下的用户回访,电话、IM调查,可用性实验测试等方式可以获取一些用户对网站的直观感受和真实评价,这些数据往往是十分有价值的,也是普通的网站分析工具所获取不到的。
在分析网站的外部数据的时候,需要注意的是不要过于相信数据,外部数据相比内部数据不确定性会比较高。网站内部数据即使也不准确,但我们至少能知道数据的误差大概会有多大,是什么原因造成了数据存在误差。而外部数据一般都是有其他网站或机构公布的,每个公司,无论是数据平台、咨询公司还是合作伙伴都可能会为了某些利益而使其公布的数据更加可信或更具一定的偏向性,所以我们在分析外部数据是需要更加严格的验证和深入的分析。而对于用户调研中获取的数据,我们一般会通过统计学的方法检验数据是否可以被接受,或者是否满足一定的置信区间,这是进行数据分析前必须完成的一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01