
如何让数据分析产生价值得到业务方认可
很多朋友都反映说,在我的公司根本就不重视数据,数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公司工作。我说,不受重视是指哪些方面?
“其它部门有数据需求的时候,我们只是做简单的加工,处理,提取数据。”
“做运营活动或者营销活动根本就不怎么看数据,直接就做活动了。”
“有时候,他们要数据直接找技术部门的DBA人员提取数据。”
“业务方开会从来不叫我。”
其时,一个数据分析师(对数据挖掘、建模,那更是只用在真正重视数据,而且数据量大的时候才会存在)的理想状态,业务部门有什么业务上的问题,会愿意来和你讨论,而你可以从数据上帮助业务人员,双方之间相互信任,沟通很顺畅。甚至你可以对业务提出自己的观点,而且有时候业务人员很愿意接受你的观点,并按照你的想法去实施。从而让你很有成就感。
但是如果一个业务部门不重视,很多做数据分析人员就“自暴自弃”。说公司不重视数据,那我就这样的,也不管它的,反正谁要什么数据,我就给他什么样的数据。
It is just a job!
其实这是一个恶性循环,不是吗?
也许是数据分析这个行业(指现在很多公司都有专门的数据分析师或者相关岗位)本来出现的时间不长,很多人都没有真正的意识到他如何让数据发挥最大的价值。但是大多数人都知道数据是有价值的。特别是互联网公司,有人说一个没有数据分析的互联网公司根本不叫互联网公司。有人说互联网的公司其实就是一个数据公司。所以很多公司的数据分析人员,常常面对这样情况?
业务部门认为,数据部门根据就没有帮上什么忙?没有提供什么有价值的数据?或者提供的数据有时候不对?没有及时提供数据?
而数据分析师认为,业务部门从来没有主动来与我讨论业务,让我了解业务,我怎么通过数据去帮助数据。最多是我要做活动了,我要干什么了。你给我拉个数据看看,或者帮我做张图,其它你不要管了。
最终二者只会越离越远,那么如何打破这个循环的呢?作为一个分析师,你为什么不去分析为什么会有这样的现状?你连自己的事情都分析不好,还指望帮别人分析什么(开个玩笑)!
为什么会出现这种情况呢?其实数据受不受重视,关键在于能不能产生(体现)“价值”。我认为主要有以下几方面:
1、数据本身是有价值的。一个数据有价值有条件有以下几条:
数据记录是准确的。
数据加工过程中是正确的。
加工完的数据(或者叫指标更合适一点),能正确反映一个业务事实。
这也是为什么现在数据分析师要求统计学、计算机专业背景,首先你的把数据业务口径转换成数据上统计口径,这需要这二个相关的专业知识。这是做数据的最基础的基础,你连数据的统计不对,不完整,不准备,还谈什么数据分析啊。
2、让管理者(或者使用数据的人)意识到它的价值!
在数据分析人员对数据进行正确加工/处理,而能否产生价值更为关键的是,让最终的目标受众(你使用数据/看数据的人)看到它的价值,能帮助业务方解决问题。能直接从你数据得到解决问题的solution,right?Howtoachieve?只有一条路,沟通!沟通!再沟通!
主动去业务方沟通,去问这些问题,
1、你现在业务发展到什么情况?
2、我们的竞争对手是什么情况?
3、整个外部市场是怎么样的?
4、日常业务你希望看数据,你希望看哪些数据(指标)?分内部数据与外部数据?
5、为什么你看这些指标?而不是其它的?
6、你希望数据更新的频率是?每天/每周/每月?
7、你希望数据的最终展现形式是?
8、目前业务上比较大的困惑在哪?对这些比较大的困惑,我们能不能联合做一些专题分析,我从数据角度,你们从业务出发,来共同解决这个问题。
(沟通的时候谦虚一点,态度好一点,你可是去向别人学习你业务知识的)
有人说,做数据分析是出来卖的。你的数据分析结果(相当你的产品)出来好,你要业务方接受(消费者)它,相信它解决你的问题。这是很有道理的。既然我们在商业里,不是追求数据分析方法多高深,不是做研究,而是更多能业务方带来帮忙,推动业务的成长,不是吗?这难道不是一个数据分析师的商业价值?
3、数据分析师的背景。很多数据分析都是学统计、计算机出身的,其对自己公司的业务、商业模式、运营模式其实了解的不多,甚至可以说“不懂”。而对业务方来说,做数据的根据就不懂业务,却拿着数据来对我们业务人员指手画脚,凭什么?(你觉得在这种情况有家会接受吗?不管你会不会接受,反正我是不会接受的。)其实,如果你是一个在这个行业背景很深的数据分析师,其实业务方是很希望与你沟通的,也许他们与你沟通刚开始不会在数据层面。这里面说明了什么?说明了数据分析师你一定要去了解业务,熟悉业务。所以相关的业务数据知识结构都没有,何以谈数据?何以得到别人的认同?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25