R语言解读多元线性回归模型 在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论。这其中可能包括了因为更好的家庭条件,所以有了更好的 ...
2017-01-31
数值型数据的探索分析 数据分析过程中,往往需要对数据作基本的探索性分析,查看数据是否存在问题,如缺失值数量、是否存在明显的异常值、数据是如何分布的、数据的集中趋势和离散趋势等。 探索性分析一般包 ...
2017-01-31
SPSS统计分析案例:最优尺度回归 1、什么是最优尺度回归? 英文简称CATREG,也称分类回归。 普通线性回归对数据的要求十分严格,当遇到分类变量时,线性回归无法准确地反映分类变量不同取值的距离,比如性 ...
2017-01-31
数据分析师眼中的数据真相 随着大数据概念的普及和人们对数据价值认识的不断深入,数据分析越来越受到人们的重视,尤其是在企业中,现在很多做销售、市场的企业人员已经开始用数据说话,很多企业也已经开始借助 ...
2017-01-31数据分析之成功案例解析 (1) Facebook广告与微博、SNS等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构eMarket ...
2017-01-31数据分析师的精髓R语言 近年来,随着大数据浪潮的到来,数据科学快速发展,数据分析师要处理的数据问题越来越复杂,传统的数据分析工具越来越显得力不从心。R语言作为国外数据分析师常用工具在国外的数据分析业 ...
2017-01-31
浅谈数据挖掘工程师-数据分析师从哪几个层次入手 更多是通过对海量数据进行挖掘,寻找数据的存在模式、或者说规律,从而通过数据挖掘来解决具体问题。数据挖掘更多是针对某一个具体的问题,是以解决具体问题为 ...
2017-01-26
如何培养数据分析意识 作为数据分析师,我们不能要求业务必须要懂数据、理解数据,但是我们需要把数据能解决什么问题,怎么解决的,解决之后会给业务带来哪些改进以及效果上的优化,如果能预测出一个具体数值或 ...
2017-01-26
R语言在数据分析师中的应用 (1)R语言是一门编程语言。 维基百科中对R语言的定义:一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。 既然R语言是一种编程语言,我们对比其他编程语 ...
2017-01-26
数据分析师招聘须知 做数据分析前我们首先要明确分析目的和内容,对于数据分析师而言,他们的进阶需求无外乎是各个企业对数据分析师的职位要求。 1.各种招聘网站主要三点要求 1)对相关业务的理解; 2 ...
2017-01-26学习数据分析师看什么教材 入门版 适合对数据分析的入门者,对数据分析没有整体概念的人,常见于应届毕业生,经验尚浅的转行者。 1.深入浅出数据分析: HeadFirst 类的书籍,一向浅显易懂形象生动,可 ...
2017-01-26
数据挖掘的分类技术分析 1、过分拟合问题: 造成原因有: (1)噪声造成的过分拟合(因为它拟合了误标记的训练记录,导致了对检验集中记录的误分类) (2)根据少量训练记录做出分类决策的模型也容易 ...
2017-01-26
R语言-妹子被追后的选择分析 前提假设 妹子们一生中可以遇到100个追求者,追求者的优秀程度符合正态分布; 每个妹子都具备判断并比较追求者优秀程度的能力; 接受或拒绝一个追求者后永远无法后悔。 那么,问题 ...
2017-01-25
使用Excel数据分析工具进行统计分析 很多小伙伴还不知道Excel自带了一个非常给力的数据分析工具,可以用来对数据进行快速统计分析,比如方差分析、t检验之类的。 开启的方法非常简单,以Excel2016为例,文件 ...
2017-01-25
R语言XML格式数据导入与处理 数据解析 XML是一种可扩展标记语言,它被设计用来传输和存储数据。XML是各种应用程序之间进行数据传输的最常用的工具。它与Access,Oracle和SQL Server等数据库不同,数据库提供 ...
2017-01-25
用R语言的quantreg包进行分位数回归 什么是分位数回归 分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位、十分位、百分位等)来得到被解释变量的条 ...
2017-01-25
R语言数据处理包dplyr、tidyr笔记 dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口;tidyr包的作者是Hadley W ...
2017-01-25数据分析师如何做好数据分析 做数据分析前我们首先要明确分析目的和内容,对于数据分析师而言,他们的进阶需求无外乎是各个企业对数据分析师的职位要求。在一些招聘平台上,我们随便搜索下数据分析的岗位信息, ...
2017-01-25
适合做数据分析师的专业有哪些 或许数据分析在很多人眼里就必须具备很强的数学、统计学或是计算机科学等学科的基础,其实不然。很多从我们这里毕业的学生都是从零开始,更有不少文科的女生。数据分析并没有你想 ...
2017-01-24
大数据分析程序的五个步骤 一个成功的大数据分析程序对于收集以及分析大数据都是至关重要的,对于大数据分析程序我们需要一个有效的流程管理,下面就来说说几点建议。 第一步、收集数据 这个过程要先 ...
2017-01-24在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17