京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数值型数据的探索分析
数据分析过程中,往往需要对数据作基本的探索性分析,查看数据是否存在问题,如缺失值数量、是否存在明显的异常值、数据是如何分布的、数据的集中趋势和离散趋势等。
探索性分析一般包括三大部分,即数据的分布情况、数据的集中与离散趋势和数据的分布形态:
首先来看看关于数据分布情况的探索性分析。一般统计中通过5数就可以大致了解数据的分布,他们是最小值、下四分位数、中位数、上四分位数和最大值。
其次看看数据的集中趋势和离散趋势,通过集中趋势可以了解数据的中心值或代表值,通过离散趋势可以了解数据远离中心的程度。关于集中趋势,一般可使用均值、众数、中位数来衡量,离散趋势一般通过标准差、极差和四分位差来体现。
最后看看数据的分布形态,数据的分布形态无非是相比于正态分布而言,即偏度和峰度。偏度是数据分布形态呈现左偏或右偏;峰度是数据分布形态呈现尖瘦或矮胖。对于偏度和峰度需要说明的是:若偏度=0,则无偏;若偏度>0,则有偏;若偏度<0,则左偏;若峰度=0,则陡峭程度与正态分布一致;如峰度>0,则分布陡峭;若峰度<0,则分布平缓。
下面从定量和定性的角度看观察数据的探索性分析过程:
自定义函数describe_statistics,函数返回变量的观测数目、缺失值数目、最小值、下四分位数、中位数、上四分位数、最大值、均值、众数、标准差、极差、四分位差、偏度和峰度。这里的自定义函数返回结果类似于SAS的输出结果形态:
```{r}
describe_statistics <- function(x){
options(digits = 3)
require(timeDate);
N = length(x);
Nmiss = sum(is.na(x));
Min = min(x, na.rm = TRUE);
Q1 = quantile(x, probs = 0.25, na.rm = TRUE);
Median = median(x, na.rm = TRUE);
Q3 = quantile(x, probs = 0.75, na.rm = TRUE);
Max = max(x, na.rm = TRUE);
Mean = mean(x, na.rm = TRUE);
Mode = as.numeric(names(table(x)))[which.max(table(x))];
Sd = sd(x, na.rm = TRUE);
Range = abs(diff(range(x)));
QRange = IQR(x, na.rm = TRUE);
Skewness = skewness(x, na.rm = TRUE);
Kurtosis = kurtosis(x, na.rm = TRUE);
#返回函数结果
return(data.frame(N = N, Nmiss = Nmiss, Min = Min, Q1 = Q1, Median = Median, Q3 = Q3, Max = Max, Mean = Mean, Mode = Mode, Sd = Sd, Range = Range, QRange = QRange, Skewness = Skewness, Kurtosis = Kurtosis))
}
```
下面我们就用这个自定义函数来测试一下,通过上面的这些统计量值来探索数据分布、集中趋势、离散趋势和分布形态。由于本文讲解的是数值型数据的探索分析,故需要将数据框中的数值型数据挑选出来,仍然自定义函数,返回数据框中所有数值型数据的字段:
```{r}
Value_Variables <- function(df){
Vars <- names(df)[sapply(df,class) == 'integer' | sapply(df,class) == 'numeric']
return(Vars)
}
```
以R中自带的iris数据集测试:
```{r}
vars <- Value_Variables(iris)
res <- sapply(iris[,vars], describe_statistics)
res
```
上面的结果呈现了鸢尾花四个数值型变量的探索性分析。
以C50包中的churnTrain数据集测试:
```{r}
library(C50)
data(churn)
vars <- Value_Variables(churnTrain)
res <- sapply(churnTrain[,vars], describe_statistics)
res
```
很显然,当变量很多时,这样的返回结果让人看的很难受,如要使输出结果便读的话,可以将返回结果转置:
```{r}
t(res)
```
这会结果要比较整齐,好看。
以上是从定量的角度来探索数据的分布、集中趋势、离散趋势和分布形态,下面我们简单介绍一下定性的方法。
从定性角度,即通过可视化来进行数据的探索性分析,强烈推荐使用GGally包中的ggpairs()函数,该函数将绘制两两变量的相关系数、散点图,同时也绘制出单变量的密度分布图:
```{r}
library(GGally)
vars <- Value_Variables(iris)
ggpairs(iris[,vars])
```
上图不仅仅反映了数据的分布情况、还得出两两变量间的散点图和相关系数,可为下一步分析做铺垫。
数据的探索性分析过程中,通过定量和定性方法的搭配,可使分析者快速的了解数据的结构、分布及内在关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17