
数据分析师眼中的数据真相
随着大数据概念的普及和人们对数据价值认识的不断深入,数据分析越来越受到人们的重视,尤其是在企业中,现在很多做销售、市场的企业人员已经开始用数据说话,很多企业也已经开始借助数据进行决策和管理,量化经营的理念正逐步深入人心。与此同时,专业的数据分析师也逐渐进入人们的视野,被评为未来十年最有前途的十大职业之一。
作为一名数据分析师,保持对数据的敏感性是最基本的要求之一,这里所说的数据敏感性不仅是指能够发现隐藏在数据之间的关系和规律,还包括能够辨别数据的真伪。因为随着数据产生量的爆炸式增长,一些假的、有问题的数据也不断出现,这些数据有些是由抽样误差或采集过程引起的,有的则是出于某种目的人为造成的,而且有些错误的数据还非常隐蔽,往往容易被人忽视,从而造成错误的判断甚至因此蒙受巨大的经济损失。作为一名数据分析师,对待这类数据不能人云亦云,需要有自己的认识和理解,要透过数据的表面看背后的真相和存在的问题,下面举几个日常生活中常见的数据案例来说明如何看清数据的真相。
1、失业率
失业率是我们大家都非常熟悉的一个指标,也是政府制定相关政策的一个重要依据。这些年,中国政府一直将失业率控制在4%以下作为一项重要的执政目标,每年也都基本实现了这一目标,然而,以大多数人的感受来说,实际的失业率似乎比4%要大,而且有时候感觉会差很多。那么,到底是什么原因造成了实际统计数据与民众自身感受之间的这种差距呢?要弄清这一问题,我们首先应该看一下失业率的概念和统计方法。
失业率是失业人口占劳动力人口的百分比。世界上大多数国家都采用两种失业统计方法。一种是行政登记失业率,另一种是劳动力抽样调查失业率。两种失业率都是政府决策的重要依据。中国之前一直采用城镇登记失业率来衡量失业情况。城镇登记失业率是指在报告期末城镇登记失业人数占期末城镇从业人员总数与期末实有城镇登记失业人数之和的比重。分子是登记的失业人数,分母是从业的人数与登记失业人数之和。在城镇单位从业人员中,不包括使用的农村劳动力、聘用的离退休人员、港澳台及外方人员。城镇登记失业人员是指有非农业户口,在一定的劳动年龄内(16岁以上及男50岁以下、女45岁以下),有劳动能力,无业而要求就业,并在当地就业服务机构进行求职登记的人员。
由城镇登记失业率的计算方法我们不难看出,一系列限制使得这一指标的代表性大为降低。由于很多真正失业的人不一定去登记,加上农村的农民就业没有包括在里面,而最近几年2.5亿农民工群体已成为一支不容忽视的就业群体,而且随着人们寿命的延长,45到60岁之间的人仍工作在第一线,然而他们却都没有被纳入到城镇登记失业率的统计范围之内,因此实际每年公布的登记失业率数字,比调查失业率要低。这也成为城镇登记失业率饱受诟病的原因,也是造成实际每年公布的失业率与我们每个人的切身感受相差较大的最根本原因。
正是基于城镇登记失业率这些明显的缺陷,中国政府决定,从2011年开始,不再使用“城镇登记失业率”这一指标,而采用“调查失业率”。 2013年9月9日,中国首次向外公开了调查失业率的有关数据。国务院总理李克强在英国《金融时报》发表署名文章《中国将给世界传递持续发展的讯息》透露,“今年以来,中国经济运行稳中有进,上半年GDP同比增长7.6%;5%的调查失业率和2.4%的通胀率,均处于合理、可控范围。”5%的调查失业率,高于此前人社部公布的一二季度均为4.1%的登记失业率,可以说更具有说服力。但这一数据到底是否准确、代表性如何,需要对调查失业率的计算方法、抽样方式、方法、调查范围等深入研究之后才能判断其最终的代表性。
二、死亡率
死亡率的概念大家都不陌生,而且一般也不会产生歧义。但是如果死亡率被用在不恰当的场合,那么同样会出现问题。
以一个经常被引用的故事为例。在美国和西班牙交战期间,美国海军的死亡率是千分之九,而同时期纽约居民的死亡率是千分之十六。后来,海军征兵人员就用这两个死亡率来证明参军更安全。那么,这个结论正确吗?显然是不正确,因为这两个数字根本就是不匹配的,当兵的一般都是身强力壮的年轻人,而居民的死亡率是包括老弱病残等各类人群的一个综合数据,而老弱病残者又是主要的死亡人群构成者,这些人拉抬了整个居民的死亡率。所以正常应该是用同年龄段的海军和纽约居民的死亡率来作对比,从而判断参军是否安全。一般情况下,相同年龄段的海军死亡率应该是高于居民死亡率的。
这一案例说明数据之间要具有匹配性才能进行对比。不具有可比性的数据有时候会很隐蔽。不容易发现,这就需要分析师有更敏锐的观察能力。比如某个零售企业想计算2013年11月前十天的销售比去年同期增长了多少,表面上来看这两个数据是可以直接对比的,有匹配性。实际上对以规律性非常强的零售企业来说,周末对销售的影响是非常大的。翻开日历会发现,2013年11月的1~10日比2012年11月同期多一个“星期天”,这就容易使对比结果出现误差。 因此,对零售企业来说,最好以周来进行对比。
三、离婚率
中国离婚率连年递增,婚外情成婚姻最大杀手,从年龄结构看22~35岁人群是离婚主力军,36~50岁年龄段是婚姻平稳期,50岁以上人群离婚率上扬,从教育背景看,学历高低与离婚率高低成反比,学历越低,离婚率越高,学历越高,离婚率越低。这些结论似乎与我们的日常感受比较吻合,但需要注意的是离婚率的计算公式是否科学合理。现行的离婚率公式是这样的:离婚率=离婚数/结婚总数,乍一看,没有任何问题。以2012年为例,2012年的离婚率就是2012年离婚数除以2012年结婚数?但仔细研究会发现,2012年离婚的人和结婚的人根本就不是一个概念。这样计算的结果容易广大人民群众造成误解!
实际的离婚率计算公式应该是:2002年结婚人群在2012年的离婚率=2002年结婚且2012年离婚总数/2002年的结婚总数。此外,如果我们对2002年结婚人群从2002年开始到2012年为止,每年都计算一个离婚率的话,还可以分析每年的离婚率变化情况,是否真在第七年的时候达到最高值,即通常所说的七年之痒是否真的存在。
与离婚率的概念类似,很多零售企业每个月都会计算的退货率,也需要分门别类才能正确的计算出来的。
以上仅仅列举了几个日常生活中常见指标的数据陷阱问题,实际生活中这样的例子还有很多。有时候是数据的确有错误,有时候数据虽然正确,但计算方法或者使用场合不正确,或者对比不匹配,同样会误导我们。因此,虽然我们不能每个人都成为数据分析师,但多尝试从数据背后看问题,多培养数据敏感性,仍然会使我们获益匪浅。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29