京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师的职业发展现状
前不久看到这样一条新闻“未来广告是否有效的关键是数据分析”不只是广告营销,越来越多的行业看重数据分析这一领域,在信息爆炸的今天,一个优秀的数据分析师可以帮助企业根据现有数据做出科学、合理的分析,在前行中准确定位,为企业排除干扰。那么今天就给大家介绍一下数据分析师的职业现状和发展。
越来越多的企业将选择拥有数据分析师资质的专业人士为他们的项目做出科学、合理的分析,以便正确决策项目;越来越多的风险投资机构把数据分析师所出具的数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的企业把数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把数据分析师培训内容作为其职业生涯发展中必备的知识体系,数据分析这个职业应运而生,毫不夸张的说,数据分析师带给企业的不仅仅是一个个数据报告,更是一桶黄金,一片片亟待探索的蓝海。
一、职业分析
数据分析师分布在不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测。数据分析师需要敏锐的数字洞察力,因此,统计、会计、保险、工程经济、金融、数学、计算机等专业的同学对这个行业有明显优势,但其他行业的同学如果对这个职业感兴趣,通过日常学习,掌握一些统计必备技能,亦可以从事此类工作。
二、主要工作领域及岗位
1、从事投资项目审核审批和招商引资、项目评估、投资决策等工作的政府机构、企业的相关领导以及从业人员。
2、在银行或非银行金融机构、投资管理公司、投资管理顾问公司从事风险投资、产业投资、信贷和投资管理等方面工作的专业从业人员。
3、会计师事务所、资产评估事务所及税务师事务所、律师相关专业人员。
4、学习财务、统计、投资、金融和企业管理等相关专业的在校应届学生。
5、在企事业单位从事市场调查与宣传工作的人士以及具有策划与决策工作职能要求的人士。
6、在不同领域尝试创业以及在投资、金融、资本运营、房地产和企业管理领域发展的各界人士。
三、基本要求
1、懂得建立目标 数据分析是为了解决问题而去分析,不是单纯为分析而分析。数据分析是有目的性的。比如:一季度ABC产品的销售情况,是按月份为横坐标建立各部门的图表;各产品线ABC在一季度的销售情况,是按部门为横坐标建立对应的图表。
2、针对不同人群提供不同的结论报告 数据分析要有结论报告,不同的人群报告的侧重点不同。比如管理层,看的是趋势和异常点;营销人员看的是ROI产出比率和高用户质量的导入情况;业务人员看的是产品对用户的活跃度等。
3、掌握数据分析工具 如果是互联网数据分析,可以从googleGA入门,EXCEL辅助,了解数据分析的基本算法。至于SAS,SPSS这些高级工具不一定需要。
4、不同时期要有不同的KPI 不断的调整目标和发现问题是数据分析精细化的必经过程。例如:腾讯的数据分析关键指标集不断调整,从2007年的关注会员基数,到现在的会员活跃度、用户体验度、性能度等等。建立对应的模型,帮助产品和项目的同事更好的了解用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22