京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计分析案例:最优尺度回归
1、什么是最优尺度回归?
英文简称CATREG,也称分类回归。
普通线性回归对数据的要求十分严格,当遇到分类变量时,线性回归无法准确地反映分类变量不同取值的距离,比如性别变量,男性和女性本身是平级的,没有大小、顺序、趋势区分,若直接纳入线性回归模型,则可能会失去自身的意义。
最优尺度回归就是为了解决类似问题,它擅长将分类变量不同取值进行量化处理,从而将分类变量转换为数值型进行统计分析。可以说有了最优尺度回归方法,将大大提高分类变量数据的处理能力,突破分类变量对分析模型选择的限制,扩大回归分析的应用能力。
2、案例数据:
某品牌服装为了解消费者对本品牌满意度情况,通过调查问卷收集到消费者的年龄、性别、月收入以及满意度等数据。其中年龄包括七个年龄段,性别为男女二分类水平,月收入包括(无收入、低档、中等、高档)四个取值水平,满意度分为(不满意、一般、满意)三档水平。根据数据情况来看,影响品牌满意度的自变量均是分类变量,普通线性回归方法无法胜任,适合采用最优尺度回归方法进行分析。
3、SPSS菜单参数设置(主要参数)
案例数据包括4个变量,因变量为满意度,性别、年龄、月收入作为自变量。
第一步:打开主菜单。
在SPSS数据视图下,在菜单栏中选择【分析】【回归】【最优尺度】选项,调出SPSS分类回归主菜单界面。
第二步:定义尺度。
为因变量和所有自变量指定最合适的测度类别。首先从左侧的变量栏中选择“满意度”,按箭头按钮方向移入因变量框内,选中底部的“定义尺度”按钮,打开相应对话框,因为满意度的3个取值水平是代表着满意程度,含有次序信息,因此选择“有序”单选按钮,完成对因变量的最优尺度定义。
相似的,将3个自变量移入自变量框内,性别定义为名义尺度,年龄定义为有序尺度,月收入定义为有序尺度。
第三步:其他参数设置
此时直接点击主菜单下的“确定”按钮,即可执行最优尺度回归过程,其他参数接受SPSS软件的默认设置。为了得到更多直观的结果,有必要设置更多参数。本案例主要设置【图】按钮菜单里的参数。
打开【分类回归:图】按钮菜单,将所有变量移入右侧的转换图框内,要求软件输出原分类变量各取值经最优尺度变换后的数值对应图。
4、主要结果解读
(1)模型摘要表
最优尺度回归模型拟合性能,主要看调整的R方,该指标反映模型拟合效果,本例调整R方值偏低,说明模型对变量总变异的解释能力不足,不适合大规模推广。
(2)方差分析表
回归模型的统计学意义,主要看sig值,本例0.006,小于显著性水平临界值0.05,说明模型显著,具有统计学意义。
(3)回归系数表
本次回归模型中3个自变量的系数表,直接看显著性值,发现在5%置信度下,月收入因素对模型的影响并不显著,年龄和性别两个因素对模型均有显著统计学意义。
(4)变量最优尺度转换图
这项结果主要是看整个分析过程中分类变量是如何转换为标准数值尺度的,是一个过程性的结果,并非关键结果。
因变量满意度是按照有序尺度转换的,此时可以看出转换后2-3之间的距离大于1-2,而并非此前等间隔距离,软件自动为其计算了最优的量化标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29