京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中常见的七种回归分析以及R语言实现(四)---多项式回归
在我们平时做回归的时候,大部分都是假定自变量和因变量是线性,但有时候自变量和因变量可能是非线性的,这时候我们就可能需要多项式回归了,多项式回归就是自变量和因变量是非线性所做的一个回归模型,其表达式:
Y=A0+A1X1+A2X2^2+ANXN^2+u
公式存手打,不是很好看,其特定就是右边的等式只有一个自变量,但却以不同的次幂出现,这时候在令Xn^n=XnJ,将模型转换成相应的多元线性回归模型
Y=A0+A1X1J+A2X2J+A3X3J....+u等,从而可以使用最小二乘法进行参数估计;
R语言代码,这里我使用R语言自带的身高体重的数据作为示例,也好久没做一个完整的分析了,这次稍微分析全一些,可以参考《R语言实战》回归篇
确定问题
首先我们要想知道升高和体重是否有什么关联,如果有关联那又是怎么样的关联呢?
数据说明
这里我们使用R语言自带的women数据集,这个不需要安装说明包,R语言自己就自带了,存在两个字段,体重和身高
height 身高
weight 体重
数据探索和可视化
首先我们先使用head()函数看看数据的前六行,因为这样我们可以大致确定数据集的字段名称和数据内容;然后在使用summary()得到数据集的总概括
head(women)
体重的数值大约是是身高的一半,这是我们的猜测;
summary(women)
体重的最小值是58,最大值是72,均值为65;这时候我们在使用看一下身高随体重的分布,因为数据集就两个列;可以直接使用Plot函数
plot(women)
可以看得出体重和身高大致呈现线性关系,略有非线性的因素;这时候我们在回归建模前先看看两个变量的相关系数,这时候我们使用cor函数得到他们的皮尔森相关系数矩阵
cor(women)
身高体重相关系数高达0.995,说明高度相关;接下来我们使用lm函数建模
fit <- lm(weight~height,data=women)
summary(fit)
截距项和体重都和身高高度显著,模型残差1.525,调整后的可决系数是0.9903;模型算是接近完美了,不过由于我们前面看到数据有些轻微的非线性分布,我们能否改进这个模型呢?
多项式回归
这里我们使用多项式回归去拟合数据,给它增加一个二次项,也就是height^2,这里不能增加过多的幂次项,因为有可能导致过拟合,I(height^2),I函数具体用法可以查查;
fit2 <- lm(weight~height+I(height^2),data=women)
summary(fit2)
从上结果上三个项都高度显著,模型貌似更优了,模型残差0.384,调整后的可决系数0.999;
这里就说那么多
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16